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The purpose of this paper is to show how the cohomological techniques de- 
veloped by Kawamata, Reid, Shokurov, and others lead to some effective and 
practical results of Reider-type on freeness of linear series on smooth complex 
projective threefolds. 

In recent years, there has been a great deal of interest in the geometric 
properties of pluricanonical and adjoint linear systems on surfaces and higher- 
dimensional varieties. Among other things, one wants to understand as explic- 
itly as possible when the systems in question are base-point free or very ample. 
Modem work in this area goes back to Kodaira [Kod] and Bombieri [Bmb], 
who studied pluricanonical maps of surfaces of general type. More recently, 
many of their results have emerged as special cases of a celebrated theorem of 
Reider [Rdr]. Reider uses vector bundle techniques to show that, if B is a nef 
line bundle on a surface X such that B' 2 5 ,  then Kx+B is globally gener- 
ated unless there exist certain special curves C c X such that B .C 5 1; he 
also obtains analogous criteria for Kx+ B to be very ample. A cohomological 
approach to these theorems, based on Miyaoka's vanishing theorem for Zariski 
decompositions, was given by Sakai [Sak2]. 
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In higher dimensions, naturally enough, much less is known. For adjoint 
linear series, a famous conjecture of Fujita [Fujl] asserts that if L is an ample 
bundle on a smooth projective variety X of dimension n , then Kx + (n + 1)L 
is base-point free and Kx t- (n + 2)L is very ample. For surfaces this follows 
from Reider's theorem, but in general it still seems out of reach. However in 
a real breakthrough Demailly [Dem] introduced some beautiful new analytic 
ideas leading to the first explicit conditions to guarantee that Kx + L is globally 
generated or very ample. His statement involves the intersection numbers of L 
with subvarieties of X and a constant in effect measuring (with respect to L) 
the curvature of X . He deduces for instance that 2K, + 12nnL is very ample 
as soon as L is ample. In a somewhat different direction, Oguiso [Og] recently 
proved that if L is an ample line bundle on a Calabi-Yau threefold X (so that 
Kx = 8 x ) ,  then 20L is globally generated and 60L is very ample. 

Concerning pluricanonical series, Kawamata [K] and Shokurov [S] proved 
that if X is a smooth minimal projective variety of general type (so Kx is 
numerically effective), then Bx(mKx) is globally generated for all m >> 0 .  For 
threefolds, Benveniste [Ben] showed that one can take m 2 34,  and Reid [Rd] 
also obtained some explicit statements (see also [Mat]). In the situation of the 
theorem of Kawamata-Shokurov, another conjecture of Fujita [Fuj2] predicts 
that ImKx( is free as soon as m 2 n t- 2 .  The proofs of the known results re- 
volve around the Kawamata-Viehweg vanishing theorem for Q-divisors. These 
cohomological techniques were developed by Kawamata, Reid, Shokurov, and 
others in connection with the minimal model program initiated by Mori. We 
refer the reader to [CKM] or [KMM] for an overview and further references. 
Our own interest in these questions grew out of the observation that one could 
use the approach of Kawamata-Reid-Shokurov to prove special cases of Rei- 
der's theorem. We will give the argument in $1 . Kollar [Ko12] then showed 
that one could use these methods to give explicit estimates, in the spirit of De- 
mailly, in all dimensions. His results imply, for instance, that on a smooth 
minimal n-fold of general type, 12(n + 2) (n + 2)!Kx I is base-point free and that 
H'(x, Kx + mB) # 0 when m > (";I) for a big and nef line bundle B on 
any smooth n-fold X . 

While the existing effective statements are very interesting from a theoretical 
point of view, most of the constants that appear are very large. So it is natural 
to ask whether one can obtain results of a more "practical" nature, in the spirit 
of Reider's work or Fujita's conjectures. In the present paper we deal only 
with global generation on threefolds, but we aim for statements which, while 
generally not optimal, are at least in the right ballpark. 

We start with an analogue of Reider's Theorem. 

Theorem 1. Let B be a big and nef divisor on a smooth complex projective 
threefold X ,  and let x E X be ajixed point. Assume that B3 2 92 and 

B . C L 3  V c u r v e s C c X w i t h C ~ x ,  

B~. S > 7 V surfaces S cX with S 3 x. 

Then Kx + B is free at x , i.e., Bx(Kx + B) has a section which is nonvanishing 
at x . Moreover, if B~ >> 0 (e.g., B3 2 1000), then the same conclusion holds 
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with the second inequality replaced by B2 .S 2 5 .  

One can use bundles over a curve to see that, if there are curves C with 
B . C < 2 and surfaces S with B, .S < 4 ,  then it can happen that B3 is 
arbitrarily large but H'(x, B,(Kx +B)) = 0 .  Theorem 1 is deduced from the 
following more general numerical criterion, in terms of the intersection numbers 
B3 ,  B2 . S ,  and B .  C ,  for @x(Kx +B) to be free at a point x : 

Theorem I*. In the situation of Theorem 1, suppose that a,, a,, a, > 0 are 
rational numbers such that B3 > a: > 3', B, .S > a:, and B .C > a, for all 
surfaces S 3 x and curves C 3 x . If 

then Kx +B is free at x 

When 27 < B3 < 92 one can use this to get other statements of Reider type 
by requiring B .C and B2 .S to be larger. 

As an immediate consequence of Theorem 1, we obtain: 

Corollary 2. Let L be an ample line bundle on the smooth projective threefold 
X . Then Kx + 5L is globally generated. If L, 2 2 then Kx + 4L is free, and 
if L' 2 4 then Kx + 3L is free. 

Again the example of IP2 bundles over a curve shows that there can be no 
numerical hypothesis on L, to force Kx + 2L to be free. Note that in the 
setting of Fujita's conjecture, where B = 4L,  all'the inequalities in Theorem 
l* hold except for a, 2 ?,/(O, - 3) , which just fails. With some additional 
argument we overcome this difficulty and deduce the optimal statement: 

Corollary 2*. If L is ample, then in fact Kx + 4L is globally generated. 

Theorem l* is in turn a consequence of a more general result (Theorem 3.2) 
which also applies in the setting of Kawamata's base-point-free theorem, and 
we find: 

Theorem 3. Let X be a smooth minimal projective threefold of general type, 
i.e., assume that Kx is nef and big. Then BX(mKx) is globally generated for 
m 2 7 . If K: > 2 then @x(6Kx) is free, and if K: > 26 then @x(5Kx) is 
free. 

The theorem improves the result of Benveniste mentioned above. Again 
one should compare with Fujita's prediction that @,(5KX) is always globally 
generated. Similarly: 

Proposition 4. Let B be a big and nef line bundle on a smooth projective three- 
fold X such that Kx + B is big and nef: Then the linear system Im(Kx +B)I 
is base-point free when m 2 7 .  

One can obtain analogous statements when K,y + B is nef but not big. 
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We expect that the techniques of the present paper can also be used to obtain 
criteria for adjoint bundles Kx +B to be very ample, although it seems this is 
not completely formal, and that some of the results can be extended to threefolds 
with mild singularities. We hope to return to these matters elsewhere. However, 
the proof of our main result is already rather long, and we thought it a kindness 
to both the reader and the authors to present it as is. 

It may be useful to say a few words about the strategy for producing sections 
of Kx + B ,  which in many respects follows the proof of Shokurov's Non- 
Vanishing Theorem [S]. Having fixed a point x E X ,  a lower bound on B3 
allows us to construct a divisor D E lnBl with high multiplicity at x . Blow up 
x , and then take an embedded resolution f : Y -X of D . The argument of 
Kawamata-Reid-Shokurov gives a smooth divisor E c Y with x E f (E) such 
that the restriction map 

(*I H'(Y, ~ * ( K , + B ) - N )-H'(E, ( ~ * ( K , + B ) - N ) 1 E) 

is surjective, where N c Y is a divisor with N nf - ' (x)  = 0 .  (For the experts: 
we ignore here the fact that in the first instance one might have to throw in a 
sum of exceptional components.) One thinks of E as arising from the "most 
singular" locus of D . So we are reduced to showing that the group on the right 
in (*) has a section which is nonvanishing at some point y E f -'(x) . 

We distinguish three cases, according to whether dim f (E)  = 0 ,  1, or 2 
(compare [W2]). In the first case, which would arise if the multiplicity of D 
were much larger at x than at neighboring points, (f* (K, +B) -N) I E = @E , 
and so we are done. If dim f (E) = 1, then there is a fibration p :E -C of 
E over a smooth curve C mapping to X .  Choose Q E C lying over x E X ,  
and let Z = p-'(Q) . Roughly (but not literally) speaking, the idea is to use 
Kawamata-Viehweg vanishing on E to show the surjectivity of 

H'(E, (~* (K ,+B) -N)  I E) -H'(z, (~* (K,+B) -N)  1 Z ) = H ' ( Z , @ ~ ) ,  

so again we would be done. Finally, suppose that dim f (E) = 2 ,  so that E 
maps birationally to a surface S c X . To a first approximation, the group on 
the right in (*) arises as H O ( E ,  K, + 'M')  for some ample Q-divisor M on 
E . The idea then is to prove a Reider-type theorem for such divisors and apply 
it to produce the required section. Unfortunately there are several technical 
difficulties here, and in fact we end up working on a surface between S and E . 
An essential remark then is that S has at worst a canonical singularity at x . 

The paper is organized as follows. For warm-up, we start in $1 by showing 
how the approach of Kawamata-Reid-Shokurov leads to a proof of some of Rei- 
der's results. Our impression is that these methods are not well known outside 
the circle of experts, and we hope that an elementary concrete application will 
lead to a wider appreciation of their power. (The ideas are particularly trans- 
parent in this setting because one does not have to pass to normal crossings.) In 
52 we prove a Reider-type theorem for Q-divisors on a surface, which may be of 
some independent interest. The statement of the main Theorem 3.2 appears in 
53, where we also introduce the set-up of the proof. The argument is completed 
in $54 and 5. In 56 we indicate the modifications necessary to prove Corol- 
lary 2*. 
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We have benefitted from discussions with J.-P. Demailly, J. Li, M. Reid, G. 
Xu, and especially G. Fernandez del Busto. The philosophy of how Kawamata- 
Viehweg vanishing can apply to give sections of Kx + B was first explained to 
us by H. Esnault and E. Viehweg in connection with a lecture by Siu, and we 
thank them for getting us started. We are particularly grateful to Y.-T. Siu for 
his kindness and patience in explaining to us the analytic viewpoint on these 
matters and the work of Demailly. Finally, we thank J. Kollar for commenting 
on an early draft of this paper and for showing us preliminary versions of [Ko12]. 

(0.1) We work throughout over the complex numbers @ . 

(0.2) If X is a smooth variety of dimension n ,we denote by Kx. a canonical 
divisor on X . We say that a divisor (or line bundle or linear series) B is free 
at a point x E X if Bx(B) has a section which is nonvanishing at x .  We 
say that B is free (or base-point free or globally generated) if Bx(B) is free at 
every point of X .  Recall that B is numerically efective or nef if B . C > 0 
for all curves C c X . If B is nef, it is in addition big if Bn > 0 .  Note that if 
f : Y -X is a generically finite surjective map of projective varieties, and if 
B is a big and nef divisor on X , then f * ~is big and nef on Y . 
(0.3) We review the customary notation concerning Q-divisors. Given a ratio- 
nal number a ,  the round-up 'a' of a is the least integer > a ,and the fractional 
part {a} is a - [a], where as usual [a] is the integer part or round-down of a .  
Thus, for instance, '-i' = [;I = (2) = 0. A Q-divisor on an algebraic variety 
X is a Weil-divisor D = E ai .Di with Q-coefficients. The group of all such is 
Divq(X), and given a prime divisor E on X , ord,(D) denotes the coefficient 
of E in D . Assuming that the Di are distinct priine divisors, the round-up of 
D is 'Dl = Era,' .  Dl . The fractional part {D) and the integral part [Dl of D 
are defined similarly. If all the Di are Cartier (or Q-Cartier, i.e., some multiple 
of each is Cartier), there is the usual notion of numerical equivalence, which 
we denote by E , and it makes perfectly good sense to say that D is ample, or 
nef and big. We refer to [CKM] or [KMM] for details. 

(0.4) The basic tool underlying the approach of Kawamata-Reid-Shokurov is 
the Kawamata-Viehweg Vanishing Theorem: 

Let X be a smooth complex projective variety, and let M be a big and nef 
Q-divisor on X . Assume that the fractional part {M) of M is supported on a 
divisor with global normal crossings. Then H'(X ,@x(Kx+ 'M')) = 0 for i > 
0 .  

Note that, since rounding does not in general commute with linear equiv- 
alence, it is important here that the fractional part of M be defined on the 
level of divisors. However, we will often tacitly identify two Q-divisors whose 
fractional parts coincide and whose integral parts are linearly equivalent. By 
the same token, we will deal with objects of the form L(D) , where L is a line 
bundle (defined up to isomorphism) and D E DivQ(X); we refer to these also 
as Q-divisors. Note that, if L(D) is such a Q-divisor and E c X is any prime 
divisor, then the restriction L(D) I E makes sense as a Q-divisor provided that 
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E does not appear in the fractional part of D ,  i.e., ord,({D)) = 0 .  If, in 
addition, E and all the components of {D) form a normal crossing divisor, 
then rounding commutes with restriction. However, when ord, ({D)) # 0 , 
the restriction L(D) I E is only defined as a linear equivalence class, i.e. as 
an element in Picq(X) . (As a practical matter, one restricts in the latter case 
for numerical calculations but not as input to Vanishing.) Besides [CKM] and 
[KMM], we recommend the articles [Koll, Wl] of Kollar and Wilson, as well 
as the notes [EV] of Esnault and Viehweg, as good introductions to this circle 
of ideas. 

This section is intended for the benefit of the nonexpert reader. We show 
how the approach of Kawamata-Reid-Shokurov leads to a simple proof of some 
of the statements from [Rdr]. The result we prove is actually a special case 
of Theorem 2.3 below, but with the technicalities stripped away. This renders 
the arguments particularly transparent, and at the risk of repetition we include 
them here in the hope of making subsequent sections (as well as the general 
techniques of Kawamata-Reid-Shokurov) more accessible to the uninitiated. 

One of the pleasant features of working on surfaces is that vanishing for 
Q-divisors holds without any normal crossing hypotheses: 

1.1. Lemma [Sakl]. Let S be a smooth projective surface, and let M he any 
big and nef Q-divisor on S. Then 

H'(s, R~(K,+ 'M ' ) )= o for i > 0. 
Proof. By a succession of blowings-up at points, we construct a map $ : 
S, +S such that {$*M) is supported on a normal crossing divisor. Since 
$*M is still nef and big, Kawamata-Viehweg vanishing (0.4) gives 

H'(s,, R ( K ~ ,+'$*M'))= o for i > 0. 
S, 

Working our way down from S, , it is therefore enough to prove: 

(1.2) Let f : Y +X be the blowing-up of a smooth surface at a point x E X , 
and let M be a Q-divisor on X . +(Ky @, ,H'(YIf 'f * (MI1))= 0 for some 
i > 0 ,  then H'(x, Rx(Kx + 'M')) = 0 .  

For (1.2), write M = 'M' - C a j D j  (0 < a, < 1), where the Dj c X are 
distinct prime divisors. Let E c Y be the exceptional divisor over x , and let 
D; c Y be the proper transform of D, . Then f*D, = D; + q,E for some 
q, > 0 ,  whence 

f * =~f * ' M ' - x a , ~ ;  - qE  (q 2 0). 

Since K, = f * ~ ,  + E ,we find that 

Ky + ' f * ~ ' =f * ( ~ ,  +'M1) - p E ,  

where p = [q] - 1 2 -1 . Therefore, 

f,(@,(KY + ' f * ~ ' ) )  = Rx(Kx + 'M') 8 rn; , 

R ~ ~ , ( @ , ( K ~  = for k > 0 ,+ ' f * ~ ' ) ) )  o 



GLOBAL GENERATION OF PLURICANONICAL AND ADJOINT LINEAR SERIES 881 

where m, is the ideal sheaf of x ,  with the convention that m: = 8, when 
p = -1. Hence, 

for all i . But H'(x, @,(K, + 'M') 8 8x/m:) = 0 when i > 0 since the sheaf 
in question is supported on a point, and therefore (1.2) follows from (*) . 
1.3. Remark. In general, suppose that M is any big and nef Q-divisor on a 
smooth complex projective variety X . Then there is an ideal sheaf & c @, , 
with 8,/&supported on a subset of codimension > 2 ,  such that 

Demailly informs us that one can view the sheaf & as one of the multiplier 
ideals that appear in the work of Nadel and in [Dem]. 

The remainder of this section is devoted to the following special case of 
Reider's theorem [Rdr]: 

1.4. Proposition. Let B be a big and nef divisor on a smooth projective surface 
S , and let x E S be a Jixed point. Assume that: 

(i) B~ 2 5 .  
(ii) B .C 2 2 V curves C c S with x E C . 

Then @'(Ks +B) has a section which is nonvanishing at x . 

Reider actually shows that if x E S is a base point for Ks + B , then there 
is a curve C c S through x with B .C = 1 and C2 = 0 or B . C = 0 and 
C2 = -1 . From the present point of view, it would take additional work to 
rule out the possibility C2 << 0 .  

The idea of the proof is this: we use (i) to construct a divisor D E lnBl (n >> 
0) with suitably high multiplicity at x . If D is irreducible -or more generally 
if 2 .  mult,(D) < multx(D) for y near x - then we have a vanishing which 
directly gives the required section. (See [SS, (7.56)] for a "classical" argument 
of this type and [EV, (7.5)-(7.8)] for an analogous fact in all dimensions.) In 
the alternative case, there is a component Do of D with high multiplicity. The 
approach of Kawamata-Reid-Shokurov is to reduce the question to producing 
a nonvanishing section on Do,  which we attack using hypothesis (ii). 

1.5. Proof of (1.4). To begin with, note that for n >> 0 there exists a divisor 

D ~ l n B l  with q = m u l t x ( D ) 2 2 n + 1 .  

In fact, by Riemann Roch and (i), h O ( x ,B,(nB)) grows like n ' ~ ~ / 22 5n2/2, 
whereas it is (2n:2) 4n2/2 conditions to impose a point of multiplicity > 
2n + 1 at x . Choose such a divisor D , and write 

where the Diare the prime components of D passing through x and F is the 
effective divisor comprised of those components of D disjoint from x . 
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Suppose first that q > 2d, for all i. Then let f : Y - S be the (1.6) 
blowing-up of x , let E c Y be the exceptional divisor, and let D: c Y be the 
proper transform of Di . Thus f * D= C d , ~ :+ q E  + f * F . Consider then the 
Q-divisor 

on Y. Now 2d,/q i1 ,  so 'M' = f * ~- 2E - N ,  where N = if*^] is an 
effective divisor supported away from E . Thus 

On the other hand, M = (1 - $)f * ~  1 -,and by construction $ > 0 .  There-
fore, M is big and nef, and vanishing ( 1 . 1 )  yields 

where N' = f* N c S is a divisor supported away from x and m, is the ideal 
sheaf of x . It follows that there is a section t E H'(s, @s(Ks + B - N')) 
such that t ( x )# 0 .  Since x $ supp(N1),  this yields the required section of 
@,(KS + B ) .  

(1.7) Suppose next that q < 2d, for some i . Note from (1.5.1) that 

so in the first place q > d,  for all i . It follows that there is a unique component 
D ,  , say D o ,  of maximal multiplicity do > 8 . Furthermore, we see that Do is 
smooth at x . Consider now on S the Q-divisor M = B - D / d o .  As above 
M z ( 1  - n / d o ) B  is big and nef, and 

for some effective divisor N c S supported away from x . It follows from the 
vanishing ( 1.1)  that H 1( S,Us(Ks+B -Do -N)) = 0 . Therefore, the restriction 
map 

is surjective. To complete the proof it is enough to show that the group on the 
right in (1.7.2) has a section 1 which does not vanish at at x , for then 7 lifts 
to t E H'(S,  @'(KS + B - N ) )  and we conclude as above. 

(1.8) The existence of the required section i will in turn follow if we verify 

For then, since ( B  -Do - N )  .Do is in any event an integer, the sheaf on the 
right in (1.7.2) is of the form o @ L ,where L is a line bundle of degree 2 2 ,

Do 
and hence is free at x . As for (1.8.1) note that 'M' -M = Gill d,D,/do+ A ,  
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where A = 'F/dO1- F/do is an effective divisor which meets Do properly. 
Thus 

But B Do > 2 by assumption, Di .Do 2 multx(Di) for i > 1, and M = 
(1 - n/do)B. Then (1.8.1) follows with a little calculation using (1.7.1). 

(1.9) It remains to treat the borderline possibility that q = 2di for some i . 
The general approach of Kawamata-Reid-Shokurovwould be to perturb slightly 
the coeffiecients of the components occurring in M . But in the present setting, 
it is easier to argue as in (1.6) using the Norimatsu-type Lemma 2.4 below to 
remove the offending Di . We leave details to the reader. 

By an analogous argument, we will prove in the next section (a generalization 
of) the following 

1.10. Variant. In the situation of (1.4), suppose that M is a nef Q-divisor on 
S such that 

M . M > 4 ,  and M . C > 2  VcurvesC3x 

Then K, + ' M  is free at x 
It would be interesting to know whether this has any applications to surfaces. 

2. A THEOREM OF REIDERTYPE FOR Q-DIVISORSON A SURFACE 

In this section we formulate and prove the Reider-type theorem for Q-
divisors that underlies our work on threefolds. In the interests of future refer-
ence, we give the result in slightly more generality than will be needed in the 
sequel. 

(2.1) We start with some remarks about the multiplicity of a fractional divisor 
at a point. Let (S ,  x )  be a normal surface germ. We assume that x is either 
a smooth point or a rational double point (RDP) of S. Let 4 :S' -,S be the 
blowing up of S at x if x is a smooth point, or the minimal resolution of the 
germ (S ,  x )  if x is a RDP. Denote by Z the exceptional divisor over x in 
the first case, or the fundamental cycle in the RDP case (cf. [BPV, 111.2 ] for the 
basic facts about RDP's). Now suppose that A is an effective Q-divisor on S .  
Then we define the multiplicity mult,(A) of A at x to be the largest rational 
number p such that pZ 5 +*A. (The pull-back makes sense thanks to the fact 
that A is automatically Q-Cartier near x .) At least when x is a smooth point, 
this is the evident notion: if we write A = C niAi as a sum of prime divisors, 
then multx(A) = C ni .multx(Ai). Note that, if f :S -M is a map from 
S to a smooth variety and D = CriDi  is a Q-divisor on M whose support 
meets f (S)properly, then 

mult, (fD) > mult (,) (D) =drf ri .mult (,) (Di). 

[Proof. By linearity it is enough to check this when D is Cartier, and then 
i t  follows from the fact that, if g E rn; is a local equation for f '(D) , then 
!Z  5 div(4*g).] 
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2.2. Notation and assumptions. We consider a surjective map of irreducible 
projective surfaces 

h : S, -So 

and points x, E S, , xo E So such that h(x,) = xo. Assume that S, is smooth 
except perhaps for finitely many rational double points along h-I (x,) (SO that 
in particular, S, is Gorenstein and Q-factorial). Let M be a big and nef Q- 
divisor on S, with the property that ' M  is Cartier. We fix positive rational 
numbers j3, , P2 such that 

(2.2.1) M .M > (j3J2, 
(2.2.2) Me I- > P, V curves T c S, s.t. h(T) is a curve through xo. 

Let A = ' M  - M be the difference between M and its round-up, and fix a 
rational number 0 5 p 5 multXl(A) . 
2.3. Theorem. In the situation of (2.2), suppose that @sl (Ksl + 'M') I T E @r 
for every reduced (but possibly reducible) curve I- c S, such that h ( T )  = xo. 
Assume also that 

t 2 - a  and 8, (I-?) 2 1 

when x, is a smooth point of S,, or 

P2 2 (1 -P)& and P, 1 - -& 2 1( I," > 
when x, is an RDP of S, . Then (KsI + 'M') has a section which is non- 

vanishing at some point x E h-I (xO).IJ moreover, h-'(xo) = {x, ) ,  then the 
same conclusion holds (with x = x,) also under the hypotheses: 

(2.3.2)smoo, P 2 L 2 - p  and Pl 2 2 - p  
when x, is smooth, or 

when x, is a rational double point. 

In order to avoid a somewhat unpleasant "tie-breaking" argument, we will 
base the proof on Kawamata-Viehweg vanishing in the form of a Norimatsu- 
type statement: 

2.4. Lemma. Let R be a big and nef Q-divisor on a smooth surface S .  Let 
El  , . . . , Ek be distinct irreducible curves on S which do not appear in the frac- 
tional pan of R ,  i.e., with ord,,({R)) = 0 .  Assume that R . Ei > 0 for all 
l l i s k . Then 

H'(s, @,(K, + 'R' + E, + . . . + E,)) = o for i > 0. 

Proof. When k = 0 ,  this is the Kawamata-Viehweg Vanishing Theorem (1.1). 
In general, one argues by induction on k . One has deg('R1.E) 1deg(R.E,) > 0 
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thanks to the hypothesis that ordEl ({R)) = 0. The lemma then follows by taking 
cohomology from the exact sequence 

Proof of Theorem 2.3. We will assume that x, is a RDP of S, . The argument 
when x, is a smooth point is similar [and the required changes will be indicated 
within brackets]. 

(2.5) For all sufficiently large integers n such that nM is Cartier, (2.2.1) and 
Riemann-Roch imply that h0(s1 ,@', (nM))> n2(p2+c)'/2 for suitable c > 0 .  

On the other hand, since x, is a double point, h0(s1 ,4,)/m: = 2e2/2 + 
(lower order terms in e ) ,where m is the ideal sheaf of x, in Sl . Therefore 

X1 

there exists an integer n >> 0 with nM Cartier, plus a nonzero section s E 
H0(s1,@', (nM) B rn: ) for some q, > n p 2 / 4 .  Let D = div(s) c S, be the 
corresponding divisor. [When x, is a smooth point, one takes q, > np2 .] 

(2.6) Let + :S -S, be the minimal resolution of S, , and let g = h o 4 : 
S - So be the composition of 4 with h .  Thus Ks = 4*Ksl . Denote 
by Z the fundamental cycle in S lying over x, . [When x, is smooth, we 
construct S by first blowing up x, and then taking the minimal resolution of 
the resulting surface. In this case Z is the exceptional divisor over x, , and 
we have Ks = + Z .] For suitable irreducible divisors {E,} S and$ * K ~ ~  on 
numbers rj E N , a j  E Q , we may write 

(2.6.1) $*D = x r , .  E,, 

(2.6.2) $*A=$*('M'- M) = x a , . ~ , .  

Note that if E, is not 4-exceptional, then 0 5 ai < 1 . Furthermore, if Z' is 
one of the components of Z ,with corresponding coefficients a' and r' , then 
r 2 q and a' 2 mult,, (A) 2 ,u. 

(2.7) Suppose first that a i  2 1 for some j . Then '($*'M - Ca,Ej)' = 

+*'M' - W ,where W # 0 is a positive linear combination of 4-exckptional 
divisors (lying over xo). On the other hand, +*'M' -CajE, = $*(M) is nef 

and big, so by vanishing we conclude that H'(s, B,(Ks + +*'M' - W)) = 0 .  
Hence, H' (s,,4,@s(Ks + $*'M - W)) = 0.  But 

where T c S, is a nonempty finite scheme supported in h-'(xo). We con- 
clude that @", (Ksl + 'M') has a section which is nonvanishing on supp(T) , as 
required. [When x, is smooth and E 0.-- Z is the exceptional divisor over it, 
this argument works when a, 2 1 for J # 0 or a. 2 2 .] 
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(2.8) So we may assume henceforth that all a j  < 1 and, in particular, that 
u < 1 .  Put 

Reindexing if necessary, let E l ,  .. . ,El be the minimizing components where 
the minimum is achieved: thus g(Ei) 3 X, ,and (1 - ai)/ri = c for 1 5 i 5 C . 
All told, we have arranged things so that a i  + cri 5 1 for any Ei with xo E 
g(Ei), and equality holds if and only if 1 5 i 5 C . Let us also choose indices 
in such a way that El  , ... ,Ek map to curves in So ,  whereas g(Ek+l) = . . . = 
g(E,) = X, . (If all the minimizing components are g-exceptional, take k = 0 .) 
Finally, put 

E ' = E ~ + . . . + E ~ ,  E " = E ~ + , + . . . + E , .  

[When x, is a smooth point and Eo = Z is the exceptional divisor lying over 
it, we assume that a, < 2 ,  and the corresponding coefficient in the definition of 
c is (2 -a,)/r, . There are then three possibilities: [a, +cr,] = 2 , 1,or 0 .  We 
consider Eo to be minimizing (and hence appearing in EM) in the first case, 
but not otherwise. The third case-when [a, + cr,] = O-will require some 
slight additional arguments. However, observe this can only occur if none of 
the minimizing components meet Z , for if x, E $(Ei) for some 1 5 i 5 C , 
then ai  5 a, and ri 5 ro,whence a, + cr, 2 1 .] 

(2.9). By examining the coefficients attached to the components of Z , one 
finds that 

(2.9.1) l - c n >  ­l '-"20.. 
P2 

Consider now the Q-divisor R =def $*'M' - C ( a j  + crj)Ej. Then in the first 
place 

so R is big and nef. Furthermore, 

(2.9.3) r ~ l  $*'M' -E' -E" -N ,= 

where N is an effective divisor on S such that supp(N) n g-l (x,) = 0. [When 
x, is smooth, (2.9.1) is replaced by 1 - cn > 1 - (2 - p)/P2 2 0 .  Referring 
to the three possibilities discussed at the end of (2.8), in the first two we have 
'R' = $*'M7 -Z -E' -E" - N .  When [a, + cr,] = 0 ,  (2.9.3) holds as stated, 
and we return to this case below.] 

(2.10) Suppose now that E" # 0 or, in other words, that at least one of the 
minimizing components is g-exceptional. For each component Ei of E' we 
have Re Ei = (1 - cn)M.  $,(Ei) 2 (1 - cn)P, > 0 .  Consequently 

H'(s, BS(Ks + $*'M' -E" -N)) = 0 

by Lemma 2.4, and hence the restriction map 

(*) HO(S,@'(KS + $*'M' - N)) -H'(E", @s(Ks + q5*'M1 -N) I E") 



GLOBAL GENERATION OF PLURICANONICAL AND ADJOINT LINEAR SERIES 887 

is surjective. On the other hand, considering E" as a reduced curve on S ,note 
that BEII( N )E since El' n supp(N) = 0 and observe that r =def $(El') 
maps under h to xo . It follows from the first hypothesis of the theorem that 

(210.1) @'(KS + $"M' - N )  I E' Z +* (asl(K,  + 'M ' ) )  1 E' = @E,l. 

By the surjectivity (*) , there thus exists a section 

t' E H O ( S ,BS(Ks+ $*'M'- N ) )  

which is nowhere vanishing on E" . Thanks again to the fact that E" is disjoint 
from the support of N ,  this implies the existence of a section 

(2.10.2) t E H O ( S ,Ws(Ks+ +*'M1))= $*H0(S1,@',(Ks, + 'M ' ) )  

which is nowhere vanishing on E" , and the assertion of the theorem follows in 
the case at hand. [When xl  is smooth, recall that Ks = +*(Ksl)+ Z . In the 

first two cases discussed in (2.8)-where 'R' = $*'M1- Z -E' -E" -N - the 
argument just given works without any essential changes. But when [ao+cro]= 
0 ,  some amplifications may be in order. In this case (2.9.3) and the surjectivity 
(*) hold as stated, and this creates a potential difficulty in passing from Ks to 
K . However, recall from (2.8) that E" n Z = 0 in the case at hand, and 
therefore the isomorphisms in (2.10.1) remain valid. So we conclude as above 
the existence of a section t E H O ( S ,@'(Ks + 4 " ~ ) )nowhere vanishing on 
El' . But 

x 0 ( S 1, (Ksl+'M1))= H O ( S ,$*@sl( K , ~+'M1))-H O ( S ,@S(KS ++*'M1)), 

where the second isomorphism is given by multiplication by Z (cf. (3.10)).So 
we do in fact get the required section of (Kslt ' M )  .] 
(2.11) It remains only to treat the case when E" = 0 ,  i.e., when all the mini-
mizing components map to curves in S o .  To this end, we argue first that it is 
enough to establish the inequality 
(2.11.1) ' R 1 . E ,  > 1.  
In fact, suppose for the time being that (2.11 . 1 )  is known. Applying Lemma 
2.4 to the divisor E2 + . . + Ek ,we find as above that the restriction 

( )  H O ( S ,@'(KS + $*'M' -N ) )-H0(E1,@'(KS + 4 " ~ '- N )  I E l )  
is surjective. Furthermore, by (2.9.3) 

(Ks + +*'M1- N )  / El -KEl+ ('R' + E2 + ..+ Ex)  I El .  

Since the left-hand side of (2.11 . 1 )  is in any event an integer, we have in fact 
that 'R' E ,  2 2 ,  and therefore 

@'(KS + $*'M' - N )  I El = oEI8 L ,  

where L is a line bundle of degree 2 2 on the irreducible Gorenstein curve 
El . This implies (cf. [Hrt])that BS(Ks+$*'M' -N )  I El is globally generated. 
But then as in (2.10) the theorem follows from the surjectivity (**) . [When xl  
is smooth, the remarks at the end of (2.10) cover the present situation as well 
if one bears in mind that Z nEl = 0 in the tricky case [ao+ cr0]= 0 .] 
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(2.12) Finally, we verify (2.11.1). By (2.9.2) and (2.9.1) 

Re E l  = (1 - c n ) ~ $ * ( ~ )El  

2 (1 - cn)P1 

and the desired inequality follows from (2.3.1). Now suppose that hK1(x0)= 

{x,) . Then E l  meets some component, say 2' ,of Z . Denoting by a' and 
r' the coefficients attached to 2' in (2.6), we have [a' + cr'] = 0 since by the 
assumption of (2.11) 2' is not minimizing. Hence, 

for some effective divisor A' which meets El  properly. Now 

nP2a' 2 p ,  r1L q1 > -, P1 L 1 - p (by (2.3.2)).JZ 
Hence, 

So as before the required inequality follows from the hypotheses (2.3.2) of the 
theorem. [When xl is smooth, the argument is similar.] 

3.1. Notation and assumptions. In the following, X is a smooth irreducible 
projective threefold, and 

h : X - X o  
is a surjective birational morphism, with Xo normal and projective. We con-
sider a big and nef line bundle B on X such that 

for some nef line bundles Bo and B1 on Xo and X respectively. Assume that 

(3.1.2) K, + B = h * ( ~ , )  for some line bundle Lo on Xo. 

Finally, fix a point xo E Xo and rational numbers a3> 3 and a', a , ,  a. > 0 
such that: 

(3.1.3) B' > (a,)' ; 

(3.1.4) B' .S (a,)' Q surfaces S c X s.t. dim h(S) = 2 and xo E h(S) ; 

(3.1.5) Be C > 0, Q curves C c X s.t. dim h(C) = 1 and xo E h(C); 

(3.1.6) B o . C o > o o  Q c u r v e s C o c X o s . t . x o ~ C o .  
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Our main result gives a numerical criterion for Lo to have a nonvanishing 
section at xo: 

3.2. Theorem. (I) In addition to u3 > 3,  assume that the following inequalities 
hold: 

Then Lo isfree at xo. Equivalently, Bx(Kx + B) has a section which is non- 
vanishing at every point x E h-' (x,) . 

(11) Suppose furthermore that h is an isomorphism over a neighborhood of xo 
or, in other words, that the jibre h-' (x,) consists of a single point x E X . Then 
the same conclusion holds with (3.2.1) and (3.2.2) replaced by 

and with (3.2.3) unchanged. 

3.3. Remark. If n3 2 3 + then (3.2.4) and (3.2.5) are equivalent respec- 
tively to 

We note also that the proof will show that one could take Bo and B, to be 
Q-Cartier Q-divisors in (3.1. l ) ,  although of course B must be Cartier. 

3.4. Proof of results stated in Introduction. Theorem l* follows from 3.2(11) 
by taking h = id and B = Bo; observe that we have combined (3.2.3) and 
(3.2.5) into a single inequality. If B3 2 92, then we can take a,= % + e and 
Theorem 1 follows with some computation. In the situation of Proposition 4, 
Kawamata's work implies that there is a birational morphism h :X -Xo to a 
projective normal threefold Xo plus an ample line bundle Lo on X, ,such that 
Bx(Kx + B) = h*Lo (cf. [Fuj3, (0.4.15)l). If we take Bo = 6L0 and B, = B 
then B3 2 B,) + B: 2 6) + 1, so we can take o3 = 6 + e for small e . Then 
the inequalities in the theorem are satisfied with oi = 6 - ei (0 5 i 5 2) for 
suitable ei. Similarly, when K, is big and nef, it pulls back from an ample line 
bundle Lo on the canonical model Xo . Taking Bo = 6L0 and B, = @,, the 
inequalities for the first statement of Theorem 3 are checked using Matsuki's 
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observation [Mat, Proposition 3(ii)]that K: is always even on a smooth three-
fold, so that we can take a, = 7 < 6 f i .  The other statements are similar. The 
proof of Corollary 2* occupies $6. 

The remainder of this section is devoted to introducing the set-up for the 
proof of Theorem 3.2. The reader will note that we follow fairly closely some 
of the ideas in the proof of the Nonvanishing Theorem (cf. [KMM] or [CKM]). 

Beginning of Proof of Theorem 3.2. 

(3.5) First, fix a point x E h-' (x,) ,and choose a small rational number a > 0 
such that B' > (a3/(l - a))' . Since B is big and nef, a well-known argument 
(cf. [SS, p. 1461) shows that h O ( x ,B(nB)) grows like ~ ' n ' / 6 .  Hence for 
n >> 0 there exists a divisor 

n43D E (nBI with q =def mult,(D) > -
1 - a .  

Next, as in [CKM, (8.7)], there is an effective divisor D' c X so that, for any 
sufficiently small 0 < E << 1, the Q-divisor B - E(D+ D') is ample. Letting 
Di denote the irreducible components of D +D' ,we may therefore fix small 
positive rational numbers d, such that 

is ample. We also write 

(3.5.2) D = C s i D i  ( ~ ~ 2 0 ) .  

Note that we are free to assume that the d, are arbitrarily small; in fact, we can 
replace each di by di/N for N >> 0 while maintaining the required amplitude 
in (3.5.1). 

(3.6) After first blowing up x ,we perform a sequence of blowings-up along 
smooth centers to construct an embedded resolution 

of D + D' . Thus suppf*(D + D') is supported on a normal crossing divisor 
CEj  . Put 

f ~ = z r , ~ , ,  K,- f K , = x b , ~ , .  

Denote by 
g = h o f : Y - X o  

the composition of f with the given map h . 
(3.7) For each of the divisors E, which is f-exceptional fix a small positive 
rational number ej in such a way that the Q-line bundle 

fexceptional 
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is ample. We then define rational numbers 6, > 0 via 

(3.7.2) Y ( E  diDi) + c'e,E, = E6,E,, 


where the second sum on the left is taken over those Ej which are f-exception-


al.' Thus A = f*(aB/03)- C6,Ej .  


(3.8) 	 Now set 
b, + 1 - 6, 

c .  = 
J r .  

I 

(We put cj = oo if rj = 0 .) Varying the di and ej slightly if necessary, while 
preserving (3.7.2), we may suppose that all the (finite) c, are distinct. Let 

We assume that the minimum occurs for j = 0 ,  and we write 

E = E,, r = r,, b = b,, 6 =do. 

Thus g(E)  3 x, ,and b -cr -6 = -1. We call E the minimizing component , 
and we adopt the convention that unless otherwise mentioned sums of the form 
C njEj are assumed taken over j 2 1. Observe that we have arranged things 

so that bj - cr, - 6, > -1 for all j # 0 such that E, meets g-' (x,) . 
By examining the coefficients attached to the exceptional divisor created by 

blowing up x ,  we see that cn < 3/a3 - 30/ '7~. Thus 

and in particular (1 - cn - a/a3)f*B+A is ample. 

(3.9) Consider now the Q-divisor on Y 

(3.9.1) 	 R = E ( b j  - cr, - 6,)Ej. 
i2 1 

We can write 

where P and N are effective divisors without common components, meeting 
E properly. Note that all the components of P are f-exceptional (since bj > 0 
for such a component), and by construction 

(3.9.3) 

Put 

'A word to the experts: as usual, the Sj will play the role of "perturbation variables" to ensure 
a unique minimizing component in (3.8). However, it will be important in 55 to have some control 
over which a component gets picked in case of a tie. This is why we go through the present 
construction. 
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Then 

and hence M is ample. The Kawamata-Viehweg vanishing theorem therefore 
yields 

H ~ ( Y , @ ~ ( ~( K , + B ) - E + P - N ) ) = o .  

Setting 
-

(3.9.6) 
-

f = f l ~ ,  g = g l ~ ,  N'= N I E ,  P I =  P I E ,  

this means that the restriction map 

is surjective. 

(3.10) It will be convenient to remove the positive components P from (3.9.7). 
To this end, recall first the standard 

3.10.1. Lemma. Suppose that h : V - W is a proper birational morphism of 
smooth projective varieties. Let Q and R be efective divisors on V having no 
common components, and assume that every component of Q is h-exceptional. 
Then h*(W,(Q))= h*(@Q(Q-R)) = 0 ,  and consequently h, (h*(O)(Q-R)) = 

h, (h*(O)(-R)) for any locally free sheaf O on W . CI 

3.1 1. Lemma. In the commutative diagram 

H'(Y, @y(f ( K ,  +B) - N)) - H'(E, B~(T(K,+B) -N')) 

both vertical maps are isomorphisms and both horizontal maps are surjective. 
Proof. The bottom horizontal map is surjective by (3.9.7), and the vertical map 
on the left is an isomorphism thanks to Lemma 3.10.1. Since the vertical map 
on the right is in any event injective, the assertion follows. 

(3.12) In conclusion, we observe that in order to prove the theorem, it is now 
enough to verify the following 

3.12.1. Criterion. There is a point y E g-' (x,) and a section 
-
s E H'(E, T*(K, +B)(-N')), 

such that 3(y) # 0 .  
Proof that (3.12.1) + (3.2). By (3.1l) ,  3 lifts to some 

not vanishing at y . Since N n g-l(-xo) = 0 ,  s in turn determines a section 

t E H'(Y, f @,(K,+ B)) with t(y) # 0. 
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But since g is birational and Xo is normal, 

H O ( y ,f *UX(Kx+ B ) )= H O ( x o ,  Lo).  

So (3.12.1) indeed implies the existence of the desired section. CI 

The plan now is to proceed in cases. In $4 we verify (3.12.1) when dim 
g ( E )< 1 . Section 5 is devoted to the case dim g ( E )= 2 .  

Keeping notation as in $3,we complete the proof when the minimizing com- 
ponent E c Y maps via g : Y -Xo to a variety of dimension < 1 . 

(4.1) Suppose first that dim g ( E )= 0.  Then g ( E )= xo , and so N' = NIE = 
8, thanks to (3.9.3). Hence 

~*u,(K, + B)( -N ' )  = g * ( ~ ~ )&,. = 

So Criterion (3.12.1) is clear in this case. 

(4.2) Assume henceforth that Co =,,, g ( E )  c Xo is a curve passing through 
xo . Let 

- -

ELC&X,  
be the Stein factorization of g .  Observe that C is normal and hence smooth 
and that p is flat. Fix a point Q E C over xo , and let Z = p-'(Q) , so that 
Z cE is a divisor, the scheme-theoretic fibre of p over Q . 
(4.3) With notation as in 53, the strategy now will be to use Kawamata-Viehweg 
vanishing on E to prove the following 

Assertion 4.3.1. There is a section S E T ( E, UE(7*(K,  + B )-N ' ) )  whose image 
under the restriction map 

is nonzero. 

(4.4) We check that (4.3)implies Criterion (3.12.1). In fact, recall from (3.1.2) 
that 7 U X ( K x+ B )  = g * ( L 0 ) ,and note that p*UE = Uc . Therefore, one has 
an isomorphism: 

H O ( C ,  d ~ ~ )  + B) ) ) .5- H'(E ,  ~ ( T ( K ,  
Thus, viewing S as a section of U E ( f  ( K ,  + B ) )  vanishing on N' , we have 
S = B(i)for some i E H O ( C ,  i7*L0). Then i ( Q )# 0 or else S would vanish 
on the scheme Z . Therefore, S is nonvanishing on supp Z , and (3.12.1) is 
verified. 

(4.5) Turning to the proof of (4.3.I ) ,  the first point is to establish the vanishing: 



894 LAWRENCE EIN AND ROBERT LAZARSFELD 

In fact, referring to (3.9),set R' = R I E , so that 'R" = P' -N' , and let M' = -* 
f (K ,  + B )  - KE + R' = M I E . Consider on E the Q-divisor L = M' - Z . 
The sheaf appearing in (4.5.1) is @E(KE+ 'L') , and hence (4.5.1) will follow 
if we prove that L is ample. To this end, set y = ( 1  - cn - c / o 3 ). Then 

-T ( ~ * ( Y $ )  + A  E ) .@@c(-Q))+ ( f * ( y B l )  I 
Now by (3.1.6) 

degc ( ~ * ( Y B ~ )@@,(-Q)) 2 Y moo- 1 .  
But y 2 ( 1  - 310,) by (3.8.1),and ( 1  - 3/03)oo2 1 by (3.2.3).Thus 

-* -* 
P (v (YBO)@ @,(-Q)) 

is nef. On the other hand, f * ( y B l )+A I E is ample since Bl is nef and A is 
ample. Hence L too is ample, and (4.5.1) is proved. 

(4.6) We claim next that 

In fact, consider on E the line bundle Ml = @,(f*(K, + B )  + P' - N' )  . 
By (3.9.3), N' n Z = 0 , and consequently no component of N' dominates 
C under p : E - C .  Therefore, if 2' = p-'(Q') is the fibre of p over 
a general point Q' E C ,  we have Ml I
 @,, E2' (P' 
I 
2'). 
 In particular, 
HO(Z',Ml I z')# 0 and (4.6.1) follows by semicontinuity. 

(4.7) Consider finally the commutative diagram 

.Ptl 1.P1 

H O ( E ,  uE(f( K ,  + B))(P'- N ' ) )  + H O ( Z ,  @E( f ( K ,  + B))(P'- N')  I Z )  

The left vertical map is an isomorphism by (3.1 l ) ,  and the lower horizontal 
map is surjective thanks to (4.5.1). Assertion (4.3.1) then follows from (4.6.1). 

This completes the proof of the theorem in the cases dim g ( E )5 1 . 
(4.8) Remark. Note that among the numerical hypotheses of Theorem 3.2, we 
have so far only used the inequality (3.2.3). 

This section is devoted to the remaining case, when the minimizing compo- 
nent E maps to a surface g ( E )  c Xo . In principle one would like to apply 
the Q-Reider Theorem 2.3 on S = f ( E )  c X to produce the section required 
in Criterion (3.12.1). However, there are various technical complications here; 
e.g., S might be very singular, and one would have to relate the divisor N on 
E to something on S . Happily we are able to control the geometry of S along 
g-l (x0) , and this lets us construct an intermediate surface where (2.3)indeed 
applies. 
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(5.1) We start with some notation supplementing (3.9). To begin with, de- 
compose the divisor P into a sum P = Pl + P2, where Pl consists of those 
components of P that meet g-l(x0) and P2 is formed from the others. Thus 
g ( ~ ' )3 xo for every component E' of Pl and 

Next, if T is a Q-divisor on Y not containing E , denote by T' the restriction 
of T to E . Thus 

Similarly, we set M' = P ( K ~-K, + R'+ B )  

(5.2) Keeping the notation of $3, we assume henceforth that So=,,, g(E) c 
Xo is a surface through xo. In this case, E is the proper transform in Y of 
a surface S c X appearing as one of the components of D in (3.5.2), say 
S = Do. Thus, 

1 - do
(5.2.1) r = o r d E ( f * ~ ) = s o > O ,  6 = d o ,  and c=-. r 

Let i; : S -So be the natural map, and set Z = %-l(x0).The situation is 
summarized in the following diagram: 

f hY - X - xo 

U - U - U 


f hE - S - so-
U u 
z - {x,> 

Recall that g = h o f and g = h 0 f 

(5.3) We need to say something about the geometry of S. To this end, define 
integers t j  1 0 by writing 

(5.3.1) f*(s)= E+C~~.E, .  
j21 

5.3.2. Lemma. Fix one of the divisors E j  c Y other than E itseg 

(i) If ord (P) > 0 then b, > t, . 
(ii) If E j  n g-l(x0) # 0 then bj 2 t, . 

Proof. If tj = 0 ,  both assertions are clear, so assume tj > 0 .  Then E, is 
f-exceptional; hence taking i = 0 in (3.7.2) gives 

(5.3.3) dj t e j + d o . t j  > d o - t j .  

On the other hand, it follows in any event from (5.3.1) and (3.5.2) that 
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Now ord (P)> 0 if and only if bj - crj - 6, > 0 .  In this case 
E, 

For (ii) suppose that xoE g(Ej) . Then cj = (bj + 1 - 6,)/rj > (1 - do)/r = c ,  
which as above yields bj + 1 > ti. The assertion follows. 

Now we come to an essential point (compare [W2] and [Ko13, 17.61): 

5.4. Proposition. Fix any point z E Z .  Then: 

(i) S is normal in a neighborhood of z . 
(ii) S is either smooth at z or has a rational double point at z . 

(iii) Every component of PI is f-exceptional. 

Proof. For (i) it is equivalent to show that S is smooth in codimension one 
in a neighborhood of z . Suppose to the contrary that Sing(S) 3 r 3 z is a 
curve of singularities. Then at some stage in the construction of the embedded 
resolution, we would have to blow up (a proper transform of) T.The first such 
blowing-up gives rise to an exceptional divisor El c Y with xoE g ( ~ l );denote 
by b1 and tl the corresponding coefficients. Then b1= 1 and t' = multr(S) 2 
2 . But this contradicts 5.3.2(ii). 

For (ii) and (iii), note first that 

Therefore, 

Moreover, an elementary residue calculation (cf. [Krnf, p. 1801) shows that 
at least over the normal locus of S ,  (5.4.1) computes KEIS on the level of 

divisors. (In other words, given a normal point w E S and y E (w) we can 
find local generators q E us,, and q1E uE, such that f.(4) = q5 .q1,where 

div(4) 'near y C ( b j  - t , )~ :  . In particular, if 7(E;.) 3 z and bj > t, , then 
E: must be f-exceptional. Statement (iii) then follows at once from 5.3.2(i). 
Similarly, (5.4.1) and 5.3.2(ii) imply that S has at worst a canonical singularity 
at z ,whence (ii). 

(5.5) We next factor f through a "partial resolution" of S. Specifically, we 
construct a surface S, sitting in the diagram: 
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with 7=f, o p and Z, = f ; ' ( ~ ) ,such that: 

(5.5.2) f, is an isomorphism over a neighborhood of Z ; 
(5.5.3) p is an isomorphism over S, - T, for a finite set T, c Z,. 

For the existence of such a factorization, note that since S is normal along 
Z , there is a neighborhood V of Z in S such that 7-I (V) - V is an 
isomorphism over the complement of a finite set T c Z . We may then contract 
T-'(T) cE to obtain S, . Set 

By abuse of notation, we will also view f, as a map f, : S, -X . Observe 
that S, is smooth except perhaps for finitely many rational double points along 
Z, . In particular, S, is Gorenstein and Q-factorial. 

(5.6) Consider now the Q-divisor R, = p,(R1) on S, , where p, : DivQ(E)-Divq(S1) is the divisor-theoretic push-forward determined by p , and put 

The plan is to apply the Reider-type Theorem 2.3 to M, and to the map h, : 
s,-so. 
(5.7) The first point is to analyze the divisor KsI + 'MI1. To this end, observe 
that since p is obtained by contracting finitely many curves in E , p, commutes 
with rounding. Therefore, 'R,' = p, ('R") = p, (P')- p, (N'). Now p, (P,')= 0 
since P,' is 7-exceptional [5.4(iii)]. So writing 

we have 

But the divisors P; and N' are supported on the complement of g-' (xo) by 
(5.1.1) and (3.9.2), and hence 

It follows in the first place that P; and N" are supported in the smooth locus 
of S, ,and hence 'MI1 is Cartier. Suppose now that I- c S, is a reduced curve 
(possibly reducible) such that h, (T) = xo. Then by (5.7.I), (5.7.2), and (3.1.2) 

Hence the first hypothesis of Theorem 2.3 is satisfied. 

(5.8) We verify next that M, satisfies the numerical hypotheses (2.3.1) with 
p = 0.  Since p, is compatible with rational equivalence and p,(KE) = Ks, , 
we find 

M, ~ , ( P ( K ~+B) -K, + R') = p , ( ~ ' ) .  
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Set y = ( 1  - cn - o/03). Then M' -7(y B )  + A I E ;whence, 

Now p,(A I E )  ,being the push-forward of a nef divisor under a proper surjec- 
tive morphism of Q-factorial surfaces, is nef. Hence M l  is nef. Furthermore, 
by Kleiman's theorem, two nef divisors have a nonnegative intersection number. 
Therefore. 

Similarly, for any curve T c S1 such that hl ( T )  is a curve through xo 

Thus we can take 

8, = ( 1  - cn - o2 and 8, = 

in (2 .2 ) . Since y > ( 1  - 3 / 0 3 )  [by (3 .8 .1 ) ] ,it is enough for (2.3.1) to show 

( 1 - : ) a 2 t 2  and ) t l .  
( 1  - 3 3 2  

But this is exactly the content of the inequalities (3 .2 .1) and (3.2.2) in the 
hypotheses of statement (I) of the theorem. 

(5.9) We conclude from Theorem 2.3 and (5.7.1)the existence of a section 

which is nonvanishing at some point x l  E Zl . But p is an isomorphism over 
the supports of P: and N" [by (5 .5 .3)] ,and consequently p*(P:) = P; , 
p*(N")= N' . Thus 

is a section of the indicated bundle which is nonvanishing at some point y E 
-- 1 
g ( xo ). Consider then the commutative diagram 

By (3 .11) the vertical homomorphism on the left is an isomorphism and the 
horizontal maps are surjective. Since the vertical maps on the right are in any 
event injective, it follows from the diagram that they are bijective. The section 
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3 E H'(E, 6''(f*(~~ + B) - N'))  then mapping to 3, is nonvanishing at y , 
and therefore Critenon (3.12.1) is verified. 

This completes the proof of statement (I) of Theorem 3.2. 

5.10. Remark. The argument just given leads to a variant in the situation of 
statement (11) of the theorem. Specifically, suppose that h is an isomorphism 
over xo. Assume that the numerical hypotheses (3.2.1) and (3.2.3) hold, but 
that (3.2.2) is replaced by 

Then Lo is free at xo. In fact, just as in (5.8), one can use (5.10.1) and (3.2.2) 
to verify the numerical hypotheses (2.3.2) of Theorem 2.3 with p = 0 .  In 
the situation of Fujita's conjecture, for example, this leads to the statement that 
K ,  +6A is base-point free if A is ample. However, in the following paragraphs 
we will see that with more work one can do a little better by using a nontrivial 
estimate for p . 
(5.11) Turning to statement (11), assume now that h-'(x,) consists of the 
single point x E X appearing in (3.5). Then S passes through x ,  and we 
denote by x, E S, the point lying over x . Put 

and let p = mult,, ( A , ) .  It is enough to show that the numerical hypotheses 
(2.3.2) of Theorem 2.3 are satisfied with P1 and P2 as given in (5.8.1). 

To this end, we need to estimate p . Let D* = xi,,si.Di be the part of D 
excluding Do = S, so that D = rS +D* . The essential point is 

5.12. Lemma. As in (3.5), let q = mult,(D) . 
(i) There is a 	neighborhood V, of x, in S, such that f,*(cD*) I 5 5 

A, I V , .  
(ii) 	If x, is a smooth point of S, , then p 2 (1 - do)(q- r)/r. 

(iii) If x, is an RDP of S, , then p 2 (1 - do)(q- 2r)lr. 

Proof. Since mult,(D*) = q - r .mult, (S),statements (ii) and (iii) follow from 
(i) by virtue of (2.1.1). For (i) note to begin with that: 

(*) f (cD*)=f (CD- c r ~ )= C (cr, - (1 - doltj)E,. 
j_>1 

Next, choose a small neighborhood V of x in S such that the following hold: 
(a) f, is an isomorphism over V (so S is smooth on V except perhaps 

at x) . 
(b) If V, = /-'(v) and V2 = p - ' ( ~ , ) ,  then supp(p;) n Y,  = 0 and 

suPp(l\rf)n Y, =0. 
By (3.9.1) and (3.9.2) 
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But (P' -N') 1 3= PP,' I 5 thanks to (b), and writing 

(6,  + cr, - b,) = (cr,  - ( 1  - d o ) t j )+ ( t ,  - b, + 6 .  - d t 
( J 0 , )  

we find from (*) and (5.4.1) 

But p * ( ~ P , ' )  = 0 and similarly p*(KEls I 5)= 0 thanks to (a). Furthermore 
6, - do t j  2 0 by (5 .3 .3) .The assertion of the lemma then follows upon applying 
P* . 
(5 .13)  It remains only to carry out the estimates showing that inequalities 
(3.2.4)and (3.2.5)lead to (2 .3 .2) .Suppose then that xl is a smooth point, and 
let p = mult,(Al ) . For (2 .3)  we need to verify 

so we may assume that p < 2 .  Since q > na3 / (1- a ),we are free to suppose 
in (3 .5)  that all the di  satisfy di  < 1 - n a 3 / q ( l- a ). Then 

p (5.12)2 ( l - d ~ ) ( q - r ) >1 i(%-r)r 1 - a  

whence, 

Therefore, 

But the function ( 2  - x ) / ( l  - ( x  + l ) / a 3 )  is decreasing in x for x < a3- 1 , 
so we find 

The other inequality in (*) is identical. When x, is a rational double point, 
one argues similarly using instead the second terms on the right sides of (3.2.4) 
and (3 .2 .5) .We leave details to the reader. 

The proof of Theorem 3.2 is now complete. 

We indicate here the modifications necessary to prove Corollary 2* in the 
Introduction. The idea is that the only difficulty occurs when the minimizing 
component maps to a curve, and 1 - cn = i.We then argue that by changing 
slightly the divisor M occuring in (3 .9 ) ,we can arrange to end up instead in 
the situation of (4 .1 ) .  

(6 .1 )  Let L be an ample line bundle on X ,and let B = 4 L  . We keep notation 
as in 53, but we take Xo = X and h = id.  Thus x E X is a fixed point, and 
we need to produce a section of @'x(Kx +B) which is nonvanishing at x . 
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(6.2) Let x : X, X be the blowing up of x ,  and let F, c X, be the 
exceptional divisor. Since L is ample, we may fix a number s > 0 such that 
x*(B)-SF, is ample. We next fix 0 < E << 1 such that 

In (3.5), we can then take 

Recall that the resolution f : Y -X constructed in (3.6) factors through the 
blowing up n . Denote by 4 : Y -X, the resulting map, and let F c Y be 
the proper transform of F, , so that F occurs as one of the exceptional divisors 
Ej  . Thus the coefficients attached to F in (3.6) are r (F)  = q , b(F) = 2 ,  and 
d (F )  = 6,. 

(6.3) Observe next that the inequalities (3.2.4) and (3.2.5) needed in $5 hold 
with a, = 4 - E, and c2= 4 - c2 for small E, and E, , but (3.2.3) just fails 
for a. = 4 .  In other words, the only troublesome situation is that occurring 
in (4.2)-(4.7), when the minimizing component E maps to a curve in X . So 
we may assume we are in that setting. As in $4, put y = 1 - cn - 0/c3. If 
y > 4 ,  then the argument in (4.5) goes through and we are done. Hence we 
may suppose that y 5 4 , i.e., 

(6.4) We now introduce perturbations of the dixisors R ,  M occurring in 
(3.9). Specifically, for rational numbers A, q > 0 put 

(Note that the sum is taken over all E j  , including the minimizing component 
E = Eo.) Thus S(c,  0 ) =  R - E ,  and 

(6.5) We claim that in order to prove Corollary 2*, it suffices to find a rational 
number q such that 

In fact, suppose such q exists, and fix 0 < i < c with ord,S(A , q) < -1 . Then 
in the first place, it follows from (6.4.3) and (6.5.1) that M ( i ,  q) is ample. 
Note next that ord S ( i ,  0) > -1 for all E j  such that f (Ej) 3 x thanks to 

E j  
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the definition of c in (3.8). Moreover, by (6.4. I), ord,,S(A, q) = ordE,S(l, 0) 
unless f ( E j )= x . Therefore, we can write 

where every component of P(1, q) is f-exceptional, and N(A, q) and T(A, q) 
are effective divisors with supp(N(1, q))n f-' (x)= 0,and f (supp(T(1, q))) = 
x . Moreover, T(A , q) # 0 since ordFS(A , q) < -1. In particular, thinking of 
T = T(A , q) as a subscheme of Y , we have r B X ( K x  + B)I T = &, . So as in 
(3.10) and (3.1 1) we find that there is a surjective homomorphism 

and we conclude as in (3.12) and (4.1). 

(6.6) It remains only to produce the required q . Recalling from (3.5) that 
q > ( e ) n ,we find using (6.3.1) 

But y > 1-& by (3.8. I), so we see that it suffices to take & < q < ( 2 ) s, 
and we are done. 

6.7. Remark. In the situation of Theorem l*, suppose that s 2 0 is a rational 
number such that n*B - s .Fl is big and nef, where ~tis the blowing-up of X 
at x E X .  Then one can show that Theorem l* holds with the last inequality 
a, 1 a3/(a3- 3) replaced by a, 2 (a3- s)/(a3- 3) .  We leave details to the 
interested reader. 
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