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1 Invariant neighbourhoods

Let X be a smooth projective variety of dimension n and let f : X --» X be
a rational self-map, both defined over a "sufficiently large” number field K. We
assume that f has a fixed point ¢ € X (K). This assumption is not restrictive if, for
example, f is a regular polarized (that is, such that f*L = L®* for a certain ample
line bundle L and a positive integer k) endomorphism: indeed, in this case the set
of periodic points in X (Q) is even Zariski-dense [F], so replacing f by a power and
taking a finite extension of K if necessary, we find a fixed point.

Our starting point is that, for a suitable prime ideal p C Ok, we can find a
7p-adic neighbourhood” ¢ € O,, C X(K,), on which f is defined and which is
f-invariant.

More precisely, choose an affine neighbourhood ¢ € U C X, which is the domain
of the definition of a set of local coordinates 1, ...z, (so that the z; define an étale
(AT ¢?77) map from U to the affine space). Then choose a model X over Spec(A)
where A = Ok[1/N] is a suitable localization of O, so that X has good reduction
everywhere. Let U C X be the corresponding open subset of X'. We have

OU) = Alzy, ... Tpy Tpy1 - T) /1

for some regular functions x,, 11, . . . x,, integral over A[zy,...x,]. By Hensel’s lemma,
we can write T,,1, . .. T, as power series in x1, . . . x,, with coefficients in some further
localisation A[1/M]:

o) c A[1/M][[x1, ..., x,]]-

The functions f*z;, 1 <1 < n, are power series in x; with coefficients in K, since
f* defines an endomorphism of the ring O, x and of its completion. We have the
following

Lemma 1.1 Let k be a field of characteristic zero and let f € k[[x1,...x,]] be a
function algebraic over k(xq,...,xq). Then f € Al[x1,...x,]], where A is a finitely
generated Z-algebra.



(THE PROOF COPIED FROM YOUR FILE. It is OK up to some details which
should be verified and possibly corrected)

Proof. Let F be a minimal polynomial of f over k[xy, ..., z4], so F(f) = 0 and
F'(f) # 0. Then F'(f) € m* ~ m**! for some s > 0, where m is the maximal ideal
in kf[z1,..., x4

Denote by f,, the only polynomial of degree < n congruent to f modulo m”. For
a polynomial ® in z and an integer m denote by ®(,,) the homogeneous part of ®
of degree m. Clearly, F'(f,)(m) is independent of n for n > m.

We are going to show that the Z-subalgebra in k£ generated by the coefficients
of f (equivalently, by the coefficients of the homogeneous components of f of all
degrees n > s) is generated, in fact, by coefficients of F' (as polynomial in d + 1
variables), by coefficients of fs;; and by the inverse of a polynomial in coefficients
of F' and in coefficients of fs.;.

This is done by induction on degree n > s: by definition, F(f,) € m™ and we
have to find (assuming that it exists!) a homogeneous polynomial A of degree n
such that F(f, +A) € m"™. One has F(f, +A) = F(f,) + F'(f,)A (mod A?), so
the condition is F'(f,)nts)+ £ (fn)(s)A = 0. This is a linear system with polynomial
coefficients in coefficients of F" and in coefficients of f;,1. As Ais a (unique!) solution
of this linear system, one can talk about the determinant of this linear system, which
is non-zero and denoted by D. Then the coefficients of A are polynomials over Z in
coefficients of F', coefficients of f,,; and in D~!. So the lemma is proved.

Therefore, for almost all primes p C Ok, the coefficients of the power series
f*xq, ... f*x, are integral in K,. We choose a p not dividing N and M and such
that this last condition holds. Obviously,

OU) C Opllx1, ..., xn]]. (%)
Define the p-adic neighbourhood O, , of the point ¢ as follows:
Opq = {t € U(Ky)|g(t) = g(q) mod p for g € O(U)}.

(THE USE OF U IS NOT A PROBLEM? It is arbitrary, not f-invariant, etc)

By a subneighbourhood O, ,,, C O, 4, we shall mean, throughout the paper, the
subset of points of O, , such that the values of regular functions at those points are
congruent to the values at ¢ modulo p”.

The following properties are clear from the definition, using the observation (x):

Proposition 1.2 (1) The functions x1, ...z, give a bijection between O, , and the
n-th cartesian power of p.

(2) f(Opq) C Opg-

(3) Indet(f) does not intersect Oy .

(4) The Q-points are dense in Oy, and in Oy g .



(A FEW WORDS OF PROOF??)

Let Ai,..., A\, be the eigenvalues of the tangent map Df,. The following is a
consequence of the p-adic versions of several well-known results in dynamics and
number theory:

Proposition 1.3 Assume that \q, ..., \, are multiplicatively independent. Then in
some subneighbourhood Oy ¢, of Oy 4, the map f is equivalent to its linear part A.

Proof. Note that the eigenvalues \; are algebraic numbers. It is well-known that
in absence of relations

A =N, 1< j<n, m=)Y m; =2, m; >0

("resonances”), there is a unique formal linearization of f, obtained by formally
solving the equation f(¢(x)) = ¢(A(x)); the expressions A" .. \7"" — \; appear in
the denominators of the coefficients of ¢ (see for example [Arn]). The problem is
of course whether ¢ has non-zero radius of convergence. By Siegel’s theorem (see
[HY]) for its p-adic version) this is the case as soon as the numbers \; satisfy the
diophantine condition

AT A — A, > Cm™

for some C, . By [Yu] , this condition is always satisfied by algebraic numbers.

Corollary 1.4 If \y,..., A\, are multiplicatively independent, the rational points on
X are potentially dense.

Proof: since algebraic points are dense in O, ,,, we can find a point z € X(Q)
which is contained in Oy,,, away from the coordinate hyperplanes in the local
coordinates linearizing f.

(PLEASE WRITE A KIND OF A PROOF: since everithing is analytic not
algebraic we need some words)

2 Variety of lines of the cubic fourfold

Now the difficulty is that it can be hard to find an interesting example such that the
eigenvalues of the tangent map at some fixed point are multiplicatively independent.
For instance if f is an automorphism and X is a projective K3 surface, or, more
generally, an irreducible holomorphic symplectic variety, then the product of the
eigenvalues is always a root of unity, as noticed in [Bv].

So first of all the map f may be only "partially linearized” in the neighbourhood
of ¢, in some sense, and after such a ”partial linearization”, the orbit of a general
algebraic point may be contained in a relatively small analytic subvariety of the
neighbourhood (of course this subvariety does not have to be algebraic, but it is
unclear how to prove that it actually is not). Nevertheless, with some additional

3



geometric information, this partial linearization can still be used to prove potential
density.

In the rest of this note, we illustrate this by giving a simplified proof of the
potential density of the variety of lines of a cubic fourfold, which is the main result
of [AV]. The proof uses several ideas from [AV], but we think that certain aspects
become more transparent thanks to the introduction of our dynamical point of view
and the use of p-adic neighbourhoods.

We recall the setting of [AV] (the facts listed below are taken from [?] and [A]).
Let V be a general smooth cubic in P® and let X C G(1,5) be the variety of lines
on V. This is an irreducible holomorphic symplectic fourfold: H*°(X) is generated
by a nowhere vanishing form o. For [ C V general, there is a unique plane P
tangent to X along [ (consider the Gauss map, it sends [ to a conic in the dual
projective space). The map f maps [ to the residual line I’. It multiplies the form o
by —2; in particular, its degree is 16. The indeterminacy locus S consists of points
such that the image of the corresponding line by the Gauss map is a line (and the
mapping is 2:1). This is a smooth surface of general type, resolved by a single blow-
up. For a general X, the Picard group is cyclic and thus the Hodge structure on
H?(X)Pr™ is irreducible (thanks to h?°(X) = 1); the space of algebraic cycles is
generated by H? = ¢}(U*) and A = ¢3(U*), where U is the restriction of Ug(1 5), the
universal rank-two bundle on G(1,5). By Terasoma’s theorem [T], these conditions
are satisfied by a “sufficiently general” X defined over a number field, in fact even
over Q; “sufficiently general” meaning “outside of a thin subset in the parameter
space”. One computes that the cohomology class of S is 5(H? — A) to conclude that
S is irreducible and non-isotropic with respect to o.

2.1 Fixed points and linearization

The fixed point set F' of our rational self-map f : X --+ X is the set of points
such that along the corresponding line [, there is a tritangent plane to V. Strictly
speaking, this is the closure of the fixed point set, since some of such points are in
the indeterminacy locus; but for simplicity we shall use the term “fixed point set”
as far as there is no danger of confusion.

Proposition 2.1 The fixed point set F' of f is an isotropic surface of general type.

Proof: 1t is clear from f*o = —2¢ that F' is isotropic. Let I C G(1,5) x G(2,5)
with projections pj,pe be the incidence variety {(I, P)|l C P} and let F C I X
PH°(Ops(3)) denote the variety of triples {(I, P, V)|V UP = 31}. This is a projective
bundle over I, so F is smooth and thus its fiber F}, over a general V' € PH?(Ops(3)) is
also smooth. This fiber clearly projects generically one-to-one on the corresponding
' = Fy, since along a general line [ C V there is only one tangent plane, and a
fortiori only one tritangent plane if any; so F' = FY, is a desingularization of F.
Since dim(I) = 11 and since intersecting the plane P along the triple line [ imposes
9 conditions on a cubic V', we conclude that F’ and F' are surfaces.
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To compute the canonical class, remark that F’ is the zero locus of a section
of a globally generated vector bundle on I. This vector bundle is the quotient of
P5S°Uga5 (Where Ug(zs) denotes the tautological subbundle on G(2,5)) by a line
subbundle £3 whose fiber at (I, P) is the space of degree 3 homogeneous polynomials
on P with zero locus [. One computes that the class of L3 is three times the difference
of the inverse images of the Pliicker hyperplane classes on G(2,5) and G(1,5), and
it follows that the canonical class of F'is p}(3c1(U*)), which is ample (we omit the

details since an analogous computation is given in [V], and a more detailed version
of it in [P]).

Remark 2.2 Since F' is isotropic and S is not, S cannot coincide with a component
of F'. In fact, dimension count shows that F'N S is a curve.

Proposition 2.3 For a general point ¢ € I, the tangent map D f, is diagonalized
with eigenvalues 1,1, —2, —2.

Proof: This follows from the fact that f*o = —20. and the fact that the map
is the identity on the lagrangian plane T,F' C T,X. Let ej, eg, e3,e4 be the Jordan
basis with e, es € T,F". There is no Jordan cell corresponding to the eigenvalue 1,
since in this case e4 would be an eigenvector with eigenvalue 4, but then o(eq,e4) =
o(eq,e4) = o(es, eq) = 0, contradicting the fact that o is non-degenerate. By the
same reason, the eigenvalues at e3 and ey are both equal to 2. Suppose that D f, is
not diagonalized, so sends ez to £2e3 and ey to e3 £ 2e4. In both cases o(e3, e4) = 0.
If e3 goes to 2e3, we immediately see that e3 € Ker(o), a contradiction. Finally, if
Df,(es) = —2e3 and D f,(e4) = e3 — 2e4, we have

—20(e1,eq) = o(ey,e3) — 20(eq, eq),

so that o(eq, e3) = 0, but by the same reason o(es, e3) = 0, again a contradiction to
non-degeneracy of o.

Proposition 2.4 (1) Let q be a general fized point of f and let Oy, be its p-adic
neighbourhood for a suitable p, as in the previous section. We identify O, , with (’)g
(so that q becomes a 0). There exists a formal power series h = hy in two variables
(t1,t2) =t such that h(—2t) = f o h(t). This series is determined uniquely by its
linear part and converges on a certain neighbourhood of zero p™ x p™ for some n
(which can be chosen depending only on the prime p). Locally, h, can be chosen to
depend analytically on q.

(2) In the complex setting, the analogous statements are true. Moreover, the
maps h, extend to global meromorphic maps from C? to X.

Proof: 1) We take the coordinates in O in which

10 0 0
01 0 O
Djq = 00 -2 0
00 0 =2



and fix the linear part h(V)(t;,t5) = (0,0,%1,;). The existence and uniqueness of
the formal solution is classical and goes in the same way as for the Poincare-Dulac
normal form (see for example [Arn]): finding h®, h® ... is linear algebra involving
division by (=2)? — 1, (=2)2 +2,...,(=2)™ — 1, (—=2)™ + 2, m € N. Since none
of those is equal to zero ("no resonances”), this works. To begin with, taking the
second order terms in h(—2t) = f o h(t) gives

W2 (=2t) = Df, - h(t) + fP(0,0,11,t5)

and thus the coefficients of A are obtained from those of f®) by dividing by
(—2)% — 1 (for the first two components hy, ho) or by (—2)2 + 2 (for the last two). In
general, comparing the terms of order m, we get that ((—2)™ — 1)h§m) (t), i=1,2
(resp. ((—=2)™ + 2)h\™ (1), i = 3,4) are sums of terms of type

f(l)(h(“), R Rl

where 47 + i3 + - - - 4+ 7, = m. Recall that we may assume that the coefficients of f
are integers by 1.1. Thus, the denominators of the coefficients of hl(»m) are products
of numbers of the form (—2)7 — 1 or (—2)7 4 2, where 2 < j < m.

The following claim is elementary (induction by m):

Claim: Each denominator is a product of at most m—1 factors, and the exponents
J1> 72> > Jmoy satisty jp <m —k+ 1.

To see that the radius of convergence of our formal power series is positive, we
must estimate the p-adic order of the denominators and conclude that it is at most
linear in m. Suppose for simplicity that all our factors are of the form (—2)7 — 1.
Since Z,, = ¥, x Z,, we have

ord,((—2)) — 1) = ord,(ja),j = 0(s)

and equal to zero otherwise; here —2 corresponds to (z,a) under the above isomor-
phism and s is the order of  in [F;. Thus a very rough estimate gives that the order
of our denominator is at most

m

5 ord,(ja) < m-ord,(a) + ord,(m!) < mloga + ll
Jj=2

So the series converges on p” X p” as soon as n > loga + zﬁ + 1.

In the general case with some factors of the form (—2)7 + 2, it suffices to double
our estimate for n.

2) In the complex case, the convergence of the power series on some neighbour-
hood U of zero in C? follows from | — 2| > 1 as in the classical Poincare theorem.
To extend the map h to C?, set

hz) = fH(h(~=2)"x)),
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where (—2)"x € U; one checks that this is independent of choices.

We immediately get the following corollary (which follows from the results of
[AV], but for which there was as yet no elementary proof):

Corollary 2.5 There exist points in X (Q) which are not preperiodic for f.

Proof: Indeed, Q-points are dense in O. Take one in a suitable invariant sub-
neighbourhood and use the linearization given by the proposition above.

Remark 2.6 If fwere reqular, this would follow from the theory of canonical heights;
but this theory does not seem to work sufficiently well for polarized rational self-maps.

2.2 Non-preperiodicity of certain surfaces

The starting point of [AV] was the observation that X is covered by a two-parameter
family >3, b € B of birationally abelian surfaces, namely, surfaces parametrizing lines
contained in a hyperplane section of V' with 3 double points. On a general X, a
general such surface has cyclic Neron-Severi group ([AV], ?7); moreover, many of
those surfaces ¥ defined over a number field have the same property, as shown by
an argument similar to that of Terasoma [T]. In fact, given a general X, the set of
such surfaces on X whose Neron-Severi group is not cyclic, is thin.

In [AV], it is shown that the iterations of a suitable ¥ defined over a number
field and with cyclic Neron-Severi group is Zariski-dense. The first step is to prove
its non-preperiodicity, that is, the fact that the number of f*(X), k € N, is infinite.
Already at this stage the proof is highly non-trivial, using the l-adic Abel-Jacobi
invariant in the continuous étale cohomology.

In this subsection, we give an elementary proof of the non-preperiodicity of a
suitable X, which is based on 2.4. Moreover, this works without an assumption on
its Néron-Severi group.

Lemma 2.7 The surface ¥ is not invariant by f.

Proof: The surface ¥ is the variety of lines contained in the intersection ¥ =
V N H, where H is a hyperplane in P° tangent to V at exactly three points. For
a general line [ corresponding to a point of ¥, there is a unique plane P tangent
to V along [, and the map f sends [ to the residual line I’. If ¥ is invariant, [’
and therefore P lie in H, and P is tangent to Y along [. But this means that [ is
7of the second type” on Y in the sense of Clemens-Griffiths (i.e. the Gauss map
of Y C H="P" sends [ 2:1 toa linein (P*)*), see [CG]. At the same time it
follows from the results of [CG] that a general line on a cubic threefold with double
points is ”of the first type” (mapped bijectively onto a conic by the Gauss map), a
contradiction.

Now let us work in the p-adic setting.
Let € ¥(K) be a point of the p-adic neighbourhood.
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Proposition 2.8 The Zariski closure D of the set of iterates of > contains the
image of the line Ox.

Since in the complex situation, everything is given by the same power series, this
is also true over C. Note that by 2.7, ¥ cannot coincide with a leaf of our local
fibration from 2.4. Suppose that ¥ is preperiodic, that is, D is a finite union of
surfaces; then from the form of f in 2.4 it is clear that each of them, in particular 3
itself, contains the germ of the line Ox. Now there are two possible cases: either the
Zariski closure of this germ is the whole of 3 and then X is invariant, an immediate
contradiction with 2.7; or the Zariski closure is a proper subvariety. In this case we
remark that extending the field K if necessarily, we can construct as many of such
subvarieties as we wish (since there is one through any K-point of ¥ in our p-adic
neighbourhood). Since these are in the intersection ¥ N f(X), this again means that
>) must be invariant.

To sum up, we have the following

Theorem 2.9 The Zariski closure D is of dimension at least three. If it is of
dimension three, this is an irreducible divisor which either contains the surface of
fixed points F, or has a curve in common with F. In this last case, D contains
correspondent "leaves” (images of C* from 2.4) through the points of this curve.

2.3 Potential density

In this subsection, we exclude the case when D is a divisor.

Our proof is a case-by-case analysis on the Kodaira dimension of D. In [AV], we
already have simple geometric arguments ruling out the cases of k(D) = —oo and
k(D) = 0. The case k(D) = —oo is especially simple since then the holomorphic
2-form would be coming from the rational quotient of D, but ¥ obviously must
dominate the rational quotient and this cannot be isotropic. The case k(D) = 0
is less easy and uses the fact that Pic(X) = Z or, equivalently, that the Hodge
structure ngim(X ) is irreducible of rank 22. Namely, an argument using Minimal
Model theory and the existence of an holomorphic 2-form on D gives that D must be
rationally dominated by an abelian threefold or by a product of a K3 surface with
an elliptic curve. But the second transcendental Betti number of those varieties
cannot exceed 21, which contradicts the fact that D carries an irreducible Hodge
substructure of rank 22; see [AV] for details.

Let us deal with the case k(D) = 2. We need the following lemma:

Lemma 2.10 On a general X, the points of order 3 with respect to f form a curve.

Proof: Let I; be (a line corresponding to) such a point, I, = f(l1), I3 = f2(ly),
so that f(l3) = [;. There are thus planes Py, P, P3, such that P, is tangent to V
along [y and contains I3, etc. Clearly, P, # P» # P3;. The span of the planes P; is
a projective 3-space (). Let us denote the two-dimensional cubic, intersection of V/



and @, by W. We can choose the coordinates (z : y : z : t) on @ such that [y is
given by y = z = 0, etc. Then the intersection of W and P, is given by the equation
22y = 0, etc. The only other monomial from the equation of W, up to a constant,
can be zyz, since it has to be divisible by the three coordinates. Therefore W is a
cone over the plane cubic given by the equation az?y + by*z + cy*z + dryz = 0 in
the plane at infinity. Now a standard dimension count shows that a general cubic
admits a one-parameter family of two-dimensional linear sections which are cones.
Each cone on V' gives rise to a plane cubic on X. This cubic is invariant under f,
and f acts by multiplication by —2 (for a suitable choice of zero). The points of
order 3 with respect to f lie on such cubic and are their points of 9-torsion.

Remark 2.11 In fact the lemma says slightly more: it applies to the indeterminacy
points which are "of order three in the generalized sense”, that is, points appearing
if one replaces the condition "f(ly) = ly, f(la) = I3, f(l3) = 117 by "Iy € f(lh),
etc.”; here by f(ly) we mean the rational curve which is the image of l; by the
correspondence which is the graph of f (equivalently, ls € f(l1) says that for some
plane P3 tangent to V' along ly, the residual line in PsNV s ly).

By blowing-up D, we may assume that the Iitaka fibration D — B is regular.
Its general fiber is an elliptic curve. By [NZ], the rational self-map f descends to B
and induces a transformation of finite order, so the elliptic curves are invariant by
a power of f. From proposition 2.4, we obtain that they are in fact invariant by f
itself: indeed, locally in a neighbourhood of a fixed point, the curves invariant by f
are the same as the curves invariant by its power. On a general elliptic curve, there
is a finite (non-zero) number of points of order three, since f acts as multiplication
by —2. We have two possibilities:

1) These are mapped to points of order three (in the ”generalized sense” as in
the 2.11) on X (or the surface they form is contracted to any other curve on X).
Then any preimage of our surface by an iteration of f is contracted as well, but
since there are infinitely many of them, this is impossible.

2) This surface dominates a component of the surface of fixed points of f. In
this case, several points of order three must collapse to the same fixed point p. But
then the resulting branches of each elliptic curve near the generic fixed point are
interchanged by f, which contradicts the local description of f in 2.4.

This rules out the possibility k(D) = 2.

Finally, let us consider the case k(D) = 1. The litaka fibration D — C maps D
to a curve C' and the general fiber U is of Kodaira dimension 0. As before, by [NZ]
f induces a finite order automorphism on C, and one deduces from 2.4 that this is
in fact the identity. We have two possible cases:

Case 1: U 1is not isotropic with respect to the holomorphic 2-form o. We use
the idea from [AV] as in the case x(D) = 0. Namely, since X is generic, the Hodge
structure H2., (X, Q) is simple.Since the restriction of o to D is non-zero, H*(D, Q)
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carries a simple Hodge substructure of rang 22. Since U is non-isotropic, the same
is true for U, but a surface of Kodaira dimension zero never satisfies this property.

Case 2: U 1s isotropic with respect to o. The kernel of the restriction of o to D
gives a locally free subsheaf of rank one in the tangent bundle T, which is in fact
a subsheaf of Ty since U is isotropic. There is thus a foliation in curves on U, and
this foliation has infinitely many algebraic leaves (these are intersections of U with
the iterates of our original surface ). By Jouanolou’s theorem, this is a fibration.
In other words, D is fibered over a surface 1" in integral curves of the kernel of op,
and U project to curves. These cannot be rational curves since the surface T is
not uniruled (indeed, the form op must be a lift of a holomorphic 2-form on T).
Therefore these are elliptic curves, and since kK = 0, so are the fibersof 7: D — S.

Recall from 2.4 that either D contains F', or it contains a curve on F; and in
this last case, locally near generic such point, D is a fibration in (isotropic) two-
dimensional disks over a curve; in particular, such a point is a smooth point of D.
If D contains F', this is a contradiction with 2.1: indeed, F' must be dominated by a
union of fibers of 7. If D contains a curve on F', then we look at the generic ”leave”
(image of C?) at this point p. Its intersection with the image of U is an invariant
curve, that is, the image of a line through the origin. And this must be an integral
curve of the kernel of op and U varies in a family, this implies that op is zero at p,
a contradiction since o is non-degenerate.
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