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Let X be a smooth projective variety defined over a number field K and let
f : X 99K X be a rational self-map defined over the same number field. As shown in
[AC], one can attach to f a dominant rational map g : X 99K T , commuting with f
and such that the fiber of g through a sufficiently general complex point x ∈ X(C)
is the Zariski closure of its iterated orbit (or “f -orbit”) {fk(x), k ∈ N}. Here
“sufficiently general” means “outside a countable union of proper subvarieties”, and
so this theorem does not give any information on the f -orbits of algebraic points,
which, apriori, can have smaller Zariski closure than general complex points.

One would of course like to show that in reality this never happens and one can
always find an algebraic point whose f -orbit is “as large” as the general one. For
instance, a conjecture already implicit in [AC] and formulated by Medvedev and
Scanlon in [MS] (Conjecture 5.3) states that if no power of f preserves a non-trivial
fibration, then there is a point x ∈ X(Q̄) with Zariski-dense f -orbit ; a variant of
this is an earlier conjecture by S.-W. Zhang stating the same in the case when f is
regular and polarized (that is, there is an ample line bundle L on X with f ∗L = qL
for some q > 1).

What is certainly true in the case when f is regular and polarized is that, at least,
there exist points in X(Q̄) with infinite f -orbits (that is, non-preperiodic algebraic
points). The reason is that in this case, one can introduce the so-called canonical
height ĥL : X(Q̄) → R which is a Weil height function for L with the property
ĥL(f(x)) = qĥL(x); it follows that the set of preperiodic points is a set of bounded
height and therefore it cannot exhaust X(Q̄) (see [CS]). However, the theory of
canonical heights does not seem to work well enough for rational self-maps.

The purpose of this note is to provide an elementary proof of the existence of
non-preperiodic algebraic points for such rational self-maps (using, though, a result
by E. Hrushovski which does not seem to have been treated in a very accessible way
for the moment). The argument is very similar to the one used by Bell, Ghioca and
Tucker to prove a version of the “dynamical Mordell-Lang conjecture” for unramified
endomorphisms of quasiprojective varieties; in fact this note is directly inspired by
[BGT] (and is a continuation of [ABR]). The point is that, thanks to Hrushovski’s
result, for some positive integer k one can find an fk-invariant p-adic neighbourhood
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in X, for a suitable prime p in the ring of integers of a suitable finite extension of K.
Then one uses [BGT] to conclude that all preperiodic points in this neighbourhood
are periodic with bounded period ≤ N and thus are contained in a certain proper
analytic subvariety.

The result of Hrushovsky we are using is as follows:

Theorem 1 ([H], Corollary 1.2) Let U be an affine variety over a finite field Fq and
let S ⊂ U2 be an irreducible subvariety over F̄q. Assume that the two projections
of S to U are dominant. Denote by φq the Frobenius map. Then for any proper
subvariety W of U , for large enough m, there exists x ∈ U(F̄q) with (x, φm

q (x)) ∈ S
and x 6∈ W .

In particular, let X̄ be any irreducible variety defined over a finite field Fq, and
let f : X̄ 99K X̄ be a separable rational self-map defined over the same field. Let
Y = I ∪ R, where I is the indeterminacy locus and R is the ramification locus
of f . Those are subvarieties defined over a finite extension of Fq, and therefore
they are periodic under φq: for some k ∈ N and any l ∈ N, φl

q(I) = φl+k
q (I) and

φl
q(R) = φl+k

q (R). Set V = X̄ − Y ∪ φq(Y ) ∪ · · · ∪ φk
q(Y ). Let U be an affine open

subset of V defined over Fq and let S be the intersection of U × U with the graph
of f . Then by Hrushovski’s theorem we have the following

Corollary 2 In the setting as above, there is a point x ∈ X̄(F̄q) such that no iterate
fk(x) is an indeterminacy or ramification point of f , and x is f -periodic. Moreover
such points are Zariski-dense in X̄.

Let now X be a variety defined over a number field K ′, and let f : X 99K X
be a rational self-map defined over K ′. We are going to use corollary 2 to find,
for a suitable finite extension K of K ′ and for a suitable prime p ⊂ OK , a ”p-adic
neighbourhood” in X, invariant under some power of f , with good properties as in
[ABR]. The procedure is almost the same as in [ABR]. Take an affine U ⊂ X such
that f is regular on U , together with a surjective K ′-morphism π = (x1, . . . , xn) :
U → An (Noether normalization). Write OU = K ′[x1, . . . , xn, xn+1, . . . , xm]/I,
where I contains for instance the minimal polynomials Pi of xn+i, i > 0 over
K[x1, . . . , xn] (but probably also something else), so that

U = Spec(K ′[x1, . . . , xn, xn+1, . . . , xm]/I);

we may suppose that I is given by a system of generators with coefficients from OK′

and take a model over OK′ : U = Spec(OK′ [x1, . . . , xn, xn+1, . . . , xm]/I). By abuse
of notation, we denote the rational map on the model by the same f . Consider
xn+1, . . . xm, f

∗x1, . . . f
∗xm as power series in x1, . . . , xn. By Lemma 2.1 of [ABR],

their coefficients are p′-integral for almost all primes p′ ⊂ OK′ . Choose p′ with
this property, and, moreover, such that the minimal monic polynomials Pi have p′-
integral coefficients and the derivatives P ′

i are not identically zero modulo p′, and
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such that f reduced modulo p′ is well-defined and separated. Consider the reduction
Ū modulo p′: Ū = Spec((OK′/p′)[x1, . . . , xn, xn+1, . . . , xm]/Ī). It is equipped with
a rational self-map f̄ , the reduction of f . By corollary 2, we can find an f̄ -periodic
point x ∈ Ū over some finite extension Fq(α) (where Fq = OK′/p′), such that no
iterate of x by f̄ is in the indeterminacy or ramification, and such that the values
of the derivatives P ′

i calculated at x are non-zero modulo p′. If Ū is singular, let
us moreover choose x in its smooth locus (however, when our original U is smooth,
we can already choose the prime p′ in such a way that Ū is smooth). Let k be the
period: f̄k(x) = x.

Let β be an algebraic number integral over OK′ such that the reduction of its
monic minimal polynomial over OK′ modulo p′ gives the minimal polynomial of α,
and let K = K ′(β). Let p be some prime of K lying over p′. The point x lifts to
a point y ∈ U(Kp) (by Hensel’s lemma) (alternatively, we can take a slightly larger
finite extension of (K ′, p′) as (K, p) to produce a point y ∈ U(K) which reduces to
x). Define the p-adic neighbourhood Op,y of y as follows:

Op,y = {t ∈ U(Kp)|xi(t) ≡ xi(y) (mod p) for 1 ≤ i ≤ m}.

We may suppose that π(y) = (0, . . . 0) ∈ An. Then, exactly as in [ABR], we get
the following

Proposition 3 (1) The functions x1, . . . xn give a bijection between Op,y and the
n-th cartesian power of p.

(2) The set Op,y contains no indeterminacy and no ramification points of f .
(3) fk(Op,y) ⊂ Op,y, moreover, fk is bijective on Op,y.
(4) The Q̄-points of X are dense in Op,y.

It will be more convenient for us to identify Op,y with a cartesian power of
Op rather than that of p. So, if our map fk is given (say on the completion of
the local ring at y) by the power series Hi(x1, . . . xn) = f ∗xi ∈ Op[[x1, . . . xn]], set
F (t1, . . . , tn) = 1

r
H(rx1, . . . rxn) where r is some fixed uniformizing element in Op .

In this way, we may view Op,y as On
p with coordinates ti, and the map fk is given by

the power series Fi on Op,y. Note that, as in [BGT], the Fi have integral coefficients
(by construction the constant terms of Hi are divisible by r), and moreover the
coefficient of tk1

1 . . . tkn
n in Fi is divisible by rk1+···+kn−1 when k1 + · · · + kn ≥ 1

(remark 2.3 of [BGT]).
Write F = (F1, . . . Fn) : On

p → On
p (so F is a way to think of the restriction of

fk to the p-adic neighbourhood) and consider F modulo p. Again as in [BGT], we
have the following

Proposition 4 There is a positive integer l such that for every z ∈ On
p , F l(z) = z

(mod p).

Proof: Modulo p, F is an affine transformation of the linear space (Op/p)n.
Its linear part L is invertible by Proposition 2.4 of [BGT] since no f -iterate of
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the smooth point x into which our p-adic neighbourhood reduces modulo p is
ramification or indeterminacy, and so f̄k is unramified at x. Therefore F modulo p

is an automorphism of a finite-dimensional affine space over a finite field, and some
power of it is the identity.

In Section 3 of [BGT], the similar situation is considered; the only difference is
that the coefficients of all power series are in Zp rather than in an extension Op.
The authors prove:

Theorem 5 ([BGT], Theorem 3.3) Let φ1, . . . , φn ∈ Zp[[x1, . . . , xn]] be convergent
power series such that φi(x) = x (mod p) and the coefficient of xk1

1 . . . xkn
n in the

series φi is divisible by pk1+···+kn−1 for k1 + · · · + kn > 1. Let (ω1, . . . ωn) ∈ Zn
p . If

p > 3, there exist p-adic analytic functions g1, . . . gn ∈ Qp[[z]], convergent on Zp,
such that gi(Zp) ⊂ Zp, gi(0) = ωi and gi(z + 1) = φi(g1(z), . . . , gn(z)).

They construct gi(z) ”by approximation”, as a Mahler series

gi(z) = ωi +
∞∑

k=1

bik

(
z

k

)
,

with bik of the form
∑∞

j=(k+1)/2 p
jcijk, cijk ∈ Zp. Since |bik|p → 0 when k → ∞,

these Mahler series define continuous functions on Zp with values in Zp. To show
that these functions are in fact analytic on Zp, one needs to check ([R], Theorem 4.7
of ChapterVI) that |bik|p/|k!|p → 0 when k → ∞, and this is true for p > 3 since
|bik|p ≤ p−(k+1)/2 and 1/|k!|p < pk/(p−1).

In the situation when Zp (not as the domain of definition of gi but as the domain
where the gi take their values) is replaced by an extension Op, their argument
goes through almost verbatim, replacing p with a uniformizing element r where
appropriate: indeed the theory of Mahler series applies to Op-valued functions on Zp

as well ([R], chapters IV.2.3,VI.4.7). The only exception is the last step concerning
the analyticity of theOp- valued map gi on Zp: instead of being analytic on the whole
of Zp, it is going to be analytic on a certain neighbourhood plZp. This is because
in the expression bik =

∑∞
j=(k+1)/2 p

jcijk, we have to replace p by the uniformizing

element r, which can be of smaller p-adic order 1/e; so that |bik|p ≤ p−(k+1)/2e and
we need the condition p > 2(e + 1) in order to guarantee |bik|p/|k!|p → 0. But
one always has convergence on some plZp (the condition for this convergence being

|pk pl−1

(p−1)pl bik/k!|p → 0).
So the theorem of [BGT] becomes

Theorem 6 Let φ1, . . . , φn ∈ Op[[x1, . . . , xn]] be convergent power series such that
φi(x) = x (mod p) and the coefficient of xk1

1 . . . xkn
n in the series φi is divisible by

rk1+···+kn−1 for k1 + · · · + kn > 1 for a uniformizing element r. Let (ω1, . . . ωn) ∈
On

p . Then there exist functions g1, . . . gn, continious on Zp and analytic on plZp

for a certain positive integer l, such that gi(Zp) ⊂ Op, gi(0) = ωi and gi(z + 1) =
φi(g1(z), . . . , gn(z)).
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Here is an immediate corollary of Theorem 6:

Corollary 7 Let X, f : X 99K X be a variety and a rational self-map defined
over a number field. Let Op,y be an fk-invariant p-adic neighbourhood constructed
in proposition 3 (formed by Kp-points for a suitable extension K of our number
field and a suitable prime p). Then there exists a positive integer N such that any
preperiodic point in this neighbourhood is periodic of bounded period ≤ N .

Proof Indeed, the neighbourhood is F = fk-invariant, and some further power
F l of f satisfies the conditions for φ in theorem 6. Let ω be a preperiodic point.
From theorem 6, its orbit under a still larger power ψ = φs = fN , depending only
on the neighbourhood itself (in particular, on the ramification index of Kp over Qp),
is encoded by an analytic map g : plZp → Op,y, satisfying g(pli) = ψi(ω) for i ∈ N.
But an analytic function taking only finitely many values on plZ must be constant,
so in fact ψ(ω) = ω and so all points with a finite orbit in the neighbourhood are
N -periodic.

From this, we immediately draw the conclusion announced in the beginning:

Corollary 8 Unless if f is of finite order, there exist points in X(Q̄) which are not
preperiodic with respect to f .

Proof: Indeed, points of bounded period must be contained in a proper analytic
subvariety of Op,y, whereas algebraic points are dense in Op,y.
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