
RATIONAL CURVES AND UNIRULED VARIETIES
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Unless otherwise stated, we work over an algebraically closed field of caracteristic
zero (mostly over C).

A rational curve is a curve C such that its normalization is P1, that is, a curve of
geometric genus zero: g(C) = 0.

Rational curves naturally appear in the structure theory of algebraic varieties.
For instance, blowing up a smooth point on a surface introduces a P1 which replaces
this point; more generally, blowing up a subvariety in a smooth variety introduces an
exceptional divisor covered by rational curves. So, for instance, if f : X 99K Y is a
rational map which is not regular everywhere (that is, has points of indeterminacy),
then Y must contain rational curves.

Since Mori’s fundamental work, we have a good understanding of the way in which
the rational curves on X are related to the positivity properties of the canonical line
bundle KX = ΛnT ∗

X (here n = dim(X)):

Theorem 1 ([Mo]): Let X be a smooth projective variety. Assume that there is
a curve D ⊂ X such that the intersection number KXD < 0. Then through any
point d ∈ D, there is a rational curve Cd. Moreover, one can choose Cd such that
dim(X) + 1 ≥ −KXCd.

Remarks: 1) If H is an ample divisor on X and a > 0 is a number such that
−KXD ≥ aHD, one can arrange −KXCd ≥ aHCd; so the rational curves of the
theorem have bounded degree.

2) In particular, if −KX is ample, so its intersection number with any curve
is positive, we obtain that through every point of X there is a rational curve C
satisfying dim(X) + 1 ≥ −KXC. Manifolds with ample anticanonical class are
called Fano varieties. They have many special properties, for instance, Fano varieties
are simply connected. Fano varieties of dimension one are, of course, just rational
curves. A Fano variety of dimension 2 is called a del Pezzo surface and is either P2,
or P1 × P1, or a blow-up of P2 at d points (with 1 ≤ d ≤ 8) in general position. We
shall say more about Fano threefolds in the article on Fano varieties.

To prove this theorem, one applies the Mori’s bend-and-break method to a reduction
of X modulo a prime p. This gives rational curves on the reduction; then one shows
that they can be lifted to X. See the article on the bend-and-break method.

A proper variety X is called uniruled if there is a dominant rational map φ :
Y ×P1 99K X, where Y is a variety of dimension dim(X)− 1. X uniruled obviously
implies that X is covered by rational curves; over an uncountable field this is, in
fact, equivalent (whereas over a countable field, the curves covering X could all come
from different families, because there is a countable number of such families; so, at
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least formally, the uniruledness is a stronger notion. I do not know of any examples
actually confirming this).

For smooth X, there is another characterization of uniruledness in terms of
rational curves ([Ko]). Let f : P1 → X be a morphism; let us say that f is free (or,
by abuse of terminology, a free rational curve) if f ∗TX is generated by the global
sections. From deformation theory, the deformations of a free rational curve cover
X. The following proposition is rather straightforward:

Proposition 1: X is uniruled if and only if X admits a free rational curve.

Remark: This remains true in positive characteristics if one replaces ”uniruled”
by ”separably uniruled”, that is, requires that the morphism φ from the definition
of uniruledness is separable (we need a P1 such that φ is unramified at its general
point).

If X is smooth and uniruled, then for any m, H0(X, K⊗m
X ) = 0: on X, there

cannot exist any pluricanonical form. Indeed, such a form would pull back to Y ×P1,
because the indeterminacy locus I of φ is of codimension at least 2, and so the pull-
back to (Y × P1) − I extends to the whole of Y × P1 by Hartogs’ theorem. But,
obviously, the canonical line bundle of Y × P1 has no sections.

Alternatively, one can observe that any pluricanonical form must be zero in
restriction to a free rational curve: in fact, let f : P1 → X be free. As f ∗TX is
globally generated and there is an injection from OP1(2) = TP1 to f ∗TX , one deduces
that deg(f ∗TX) ≥ 2; therefore KX · f(P1) < 0, which implies the assertion. But free
rational curves cover an open subset of X, so all pluricanonical forms vanish.

Remark: The previous remark about the positive characteristics applies here as
well.

Conjecture 1: The converse is also true: if all pluricanonical forms vanish on
X, then X is uniruled.

Remark: In birational geometry, one introduces the Kodaira dimension κ(X)
of X, as, roughly, the rate of growth of the dimension of H0(X, K⊗m

X ) together
with m: H0(X, K⊗m

X ) ∼ mκ(X), and if there are no sections of K⊗m
X at all, one puts

κ(X) = −∞. The conjecture thus says that X is uniruled if and only if κ(X) = −∞.

Conjecture 1 is classically known in dimension 2. Indeed, the Castelnuovo’s
criterion asserts that a surface S is rational if and only if q(S) = p12(S) = 0:
here q(S) is the irregularity h0(S, Ω1

S) and pm(S) = h0(S, K⊗m
S ). Using Albanese

map, it is not very difficult to show that p12(S) = 0 and q(S) > 0 means that S is
birational to a ruled surface.

In dimension three, this is a consequence of a deep result by Y.Miyaoka ([Mi])
and the minimal model theory. The minimal model program provides the following
alternative: either X is covered by rational curves, or X is birational to a variety
X ′ with mild (”terminal”) singularities and such that KX′ is numerically effective.
This is completely worked out in dimension 3 (due to the efforts of many people;
see for example [CKM] for a reasonably short and clear exposition). The result
of Miyaoka, also valid in dimension 3, is that KX′ numerically effective implies
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K⊗m
X′ effective for some positive integer m (this is in fact a partial case of the so-

called abundance conjecture, crucial for the proof of that conjecture in dimension
3). Finally, the ”mild” singularities are (by definition) so mild that they do not
influence the plurigenera.

In arbitrary dimension, the conjecture is still open. In this direction, there is
an interesting recent work by Boucksom, Demailly, Peternell and Paun [BDPP].
Consider the cone spanned by the classes of effective divisors in H1,1

R (X) (the
space of real (1,1)-classes on X). Let E be its closure. Let us call a line bundle
pseudoeffective, if its class is contained in E .

Theorem 2 ([BDPP]) A line bundle L on a projective manifold X is pseudoeffective
if and only if L · C ≥ 0 for every curve C which moves in a family covering X.

Corollary: If KX is not pseudoeffective, then X is uniruled.

(this obviously follows from the theorem by Mori’s result stated in the beginning).
To deduce the conjecture, one would have to prove that KX pseudoeffective implies

κ(X) ≥ 0. In [BDPP], there is the following partial result in dimension 4: suppose
moreover that there is a covering family Ct with KX · Ct = 0; then κ(X) ≥ 0.

So, at least conjecturally, X uniruled is equivalent to the Kodaira dimension of
X being −∞. On the other hand, again conjecturally (this is a form of Lang’s
conjectures), κ(X) = dim(X) = n should be equivalent to the existence of a proper
subvariety Y ⊂ X, containing all rational and elliptic curves of X. Here, one must
remark that the two conjectures have very different status: the characterization of
uniruled varieties, though undoubtedly difficult, seems to be subject to a significant
progress now, whereas for Lang’s conjectures, there is still very few evidence in
dimension > 2. We shall discuss some results on the latter towards the end of this
short survey.

Another important notion is that of rational connectedness. X is said to be
rationally connected (RC) if any two sufficiently general points of X can be joined
by a rational curve, and chain rationally connected (CRC), if any two sufficiently
general points of X (or, equivalently, any two points of X) can be joined by a chain
of rational curves. For smooth varieties, RC is equivalent to CRC; for singular
varieties, being RC is stronger: so, for example, a cone over an elliptic curve is
CRC but not RC. For certain classes of singularities (in particular, among those
appearing in the minimal model theory) the two notions coincide (see for example
[HMK], Corollary 1.8 and similar statements).

We have the following parallel with the uniruled situation ([Ko]): let us say that
f : P1 → X is a very free rational curve, if f ∗TX is ample, that is, f ∗TX =

∑
OP1(ai)

with ai > 0. By deformation theory, this is the same as to say that the deformations
of this rational curve with one point fixed cover X.

Proposition 2: X is rationally connected if and only if X admits a very free
rational curve.

It follows that on a rationally connected varieties, all contravariant holomorphic
tensors vanish: H0(X, (Ω1

X)⊗m) = 0 for all m > 0. Indeed, such a tensor must
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vanish along a very free rational curve; but such curves cover a Zariski-open subset
of X.

As before, in positive characteristic one must replace here rational connectedness
by ”separable rational connectedness”; we shall not go into the details.

Conjecture 2 Conversely, H0(X, (Ω1
X)⊗m) = 0 for all m > 0 implies rational

connectedness.
In fact this is implied by Conjecture 1 (see the article on Graber-Harris-Starr

theorem).

Besides the vanishing of holomorphic tensors, we have the following general property
of rationally connected varieties:

Proposition 3 ([Ca1]) Rationally connected varieties are simply connected.

Let us give a sketch of Campana’s argument. Roughly speaking, X rationally
connected means that the deformations of some rational curve with one point p ∈ X
fixed cover X. Let T be the parameter space of those curves and Z ⊂ T × X be
the universal family, so p1 : Z → T is a P1-bundle over an open subset of T , with a
section S coming from the fixed point p. The second projection p2 : Z → X contracts
S to a point a. One may suppose that all our varieties are normal. From the fact
that p1 is generically a P1-bundle, one deduces that π1(S) surjects onto π1(Z). Now
(p2)∗π1(Z) is of finite index in π1(X) (this holds in general for a proper surjection of a
normal Z onto a smooth X). But the image of composition π1(S) → π1(Z) → π1(X)
is trivial, because S is contracted to a point; so π1(X) must be finite.

Consider the universal covering σ : X̃ → X. As π1(X) is finite, X̃ is compact,
and it is easy to see that it is rationally connected. Therefore (by Hodge theory
and the vanishing of holomorphic tensors) hi(X,OX) = hi(X̃,OX̃) = 0. So the

Euler characteristics χ(X,OX) = χ(X̃,OX̃) = 1; but a finite unramified covering
multiplies the Euler characteristic by its degree, so σ is an isomorphism and X is
simply connected.

The following construction is also due to F. Campana (in fact, his setting is much
more general, see [Ca2] for a detailed exposition), and to Kollar-Miyaoka-Mori:

Definition-Theorem 3([Ca], [KMM])Let X be a normal and proper variety.
Then there is a rational map π : X 99K Z, unique up to birational equivalence, such
that fibers Xz are CRC, and for a general z ∈ Z, any rational curve on X meeting
Xz lies in Xz.

Thus, a general fiber Xz consists of all points of X which can be joined to a certain
point xz by a chain of rational curves.

An important property of the map π (and other maps associated to good families
of cycles, see [Ca2]) is that it is almost regular, that is, its general fiber does not
meet the indeterminacy locus.

In [KMM],[Ko], the map π is called the MRCC-fibration (maximally rationally
chain connected fibration), or the MRC-fibration (maximally rationally connected
fibration) in the case when X is smooth (then we can of course assume that the
fibers are rationnally connected). The variety Z from the theorem 4 (defined up to
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birational equivalence) is called the rational quotient of X according to Campana’s
terminology ([Ca]).

The following is a consequence of a theorem by Graber, Harris and Starr [GHS]
(see the article on Graber-Harris-Starr theorem for more details):

Theorem 4 ([GHS]) The rational quotient is not uniruled.

By Mori’s bend-and-break, Fano varieties are uniruled; in fact a stronger result
holds:

Theorem 5 ([Ca], [KMM2]) Fano varieties are rationnally connected.

Corollary: Fano varieties are simply connected.

There are in fact several proofs of the simple-connectedness of Fano manifolds.
Historically, the first approach uses the L2-cohomology and Atiyah’s L2-index theorem
([A]). The argument is based on the “covering trick” which we described in the proof
of Proposition 3; if one works with L2-cohomology instead of the usual cohomology
of the structure sheaf, it produces an L2-holomorphic function on the universal
covering, which must thus be compact. S. Takayama develops this approach in [T]
to show that if one allows certain (“log-terminal”) singularities, Fano varieties still
are simply-connected.

Let us also mention some ”Mori-type” (that is, relating rational curves to the
negativity properties of canonical or cotangent bundle) results for algebraic foliations.
Here, the starting point is the following semipositivity theorem by Miyaoka:

Theorem 6 ([Mi2]): Let F be a foliation on an algebraic surface. If F is not
a meromorphic fibration by rational curves, then the canonical line bundle KF is
pseudoeffective.

(If one views a foliation as a subsheaf of TX , then its canonical bundle, by
definition, is just the dual of its determinant).

The following result was first obtained by Bogomolov and McQuillan [BM], then
Kebekus, Sola Conde and Toma [KSCT] gave a simpler proof:

Theorem 7: Let X be normal projective, C ⊂ X a curve contained in its smooth
locus and F ⊂ TX a foliation regular along C. If F|C is ample, the leaf through any
point c ∈ C is algebraic, and its closure is rationally connected for a general c. If F
is regular, all leaves are rationally connected submanifolds.

In conclusion, let us discuss rational curves on some non-uniruled varieties. For
instance, it is known (see [MM], where the theorem is attributed to Bogomolov and
Mumford) that there is an infinite number of such curves on a K3-surface (on a
generic one, all those curves must be singular, because its Picard number is one).
So rational curves on a K3-surface are Zariski-dense. It has been conjectured that
they are dense in the analytic topology, and even that through any rational point
of a K3-surface defined over Q, there is a rational curve; but so far, this is neither
proved nor disproved.

On the contrary, it is expected that neither rational nor elliptic curves can be
Zariski-denses on a variety X of general type. Moreover, in the complex case, even
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the entire curves (that is, images of nonconstant holomorphic maps C → X) should
be contained in a proper subvariety: this is a variant of Lang’s conjecture. In other
words, a Zariski-open subset X must be Brody hyperbolic (see for example [L] for
the basic definitions and results on hyperbolicity).

In this direction, probably the first major result is due to Bogomolov [B]:

Theorem 8 Let X be a surface of general type, such that c2
1(X) > c2(X). Then

for any g, the curves of geometric genus g on X form a bounded family.

A bounded family is, roughly, a family having only a finite number of irreducible
components. Since X, being of general type, is not covered by rational or elliptic
curves, those curves cannot deform. Bogomolov’s theorem thus says that there is
only a finite number of rational and elliptic curves on X.

McQuillan in [MQ] handles the case of entire curves, under the same numerical
condition on X:

Theorem 9 Let X be a surface of general type, such that c2
1(X) > c2(X). Then

any entire curve on X is contained in a rational or elliptic curve (in other words, a
holomorphic map f : C → X cannot have Zariski-dense image).

The condition c2
1 > c2 is quite restrictive, for example, it is never satisfied by a

hypersurface in P3. For general hypersurfaces in projective space Pn+1, a conjecture
of Kobayashi predicts the hyperbolicity as soon as the degree is high enough (here,
”general” means ”outside a countable union of proper subvarieties in the parameter
space”). This is known for n = 2 by the work of Demailly and El Goul [DEG]:

Theorem 10 There are no entire curves on a general hypersurface of degree at
least 21 in P3.

(M. Paun lowered the bound to 18; conjecturally, it should be 5.)

If one is interested only in algebraic curves, there are results in any dimension
by H. Clemens, L. Ein, C. Voisin, G. Xu and others. For example, the following is
partly proved by H. Clemens and partly by C. Voisin; we refer to [V] for the proof
and for some generalizations and precisions:

Theorem 11 A general hypersurface of degree d in Pn+1 contains no rational
curves for d ≥ 2n + 1. If n ≥ 3, this is true for d ≥ 2n.

The key idea behind these results, except for the last one, is that the entire
curves must satisfy certain algebraic differential equations and thus lift to special
subvarieties of the so-called ”jet bundles”. The scope of this article does not permit
to give more details here; we refer the reader to the work of Green and Griffiths
[GG] which develops the modern approach to this, or to Demailly’s lecture notes
[D]. In fact, Bogomolov’s theorem slightly preceeds [GG] and has been one of its
sources of inspiration.
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