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INTEGRAL CHARACTERISTIC NUMBERS FOR
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§1. INTRODUCTION

LET M be a closed weakly almost complex manifold of real dimension 2k and let 7 : M —» BU
be its tangential map. For an element v of H**(BU; Q) we let correspond the value of t*(v)
evaluated on the fundamental class of M. This correspondence defines a homomorphism

a(M) : H*(BU; Q) - Q.

Let I?* be the subgroup of H**(BU; Q) consisting of those elements which are mapped by
a(M) into the integer group Z for any closed weakly almost complex manifold M.

The purpose of the present paper is to determine explicitly the group I**. To state the
result, we denote by ch(BU) the image of Atiyah~Hirzebruch group K(BU) in H**(BU; Q)
by the character homomorphism. Also, the universal Todd class will be denoted by 7.
Then 2k-dimensional components of elements of the form y-Z with y belonging to ch(BU)
constitute a subgroup I'?* of H**(BU; Q). Now, the differentiable Riemann-Roch theorem
due to Atiyah~Hirzebruch [3] implies that the subgroup I'** is contained in 7?*. Our result is
summarized in the following:

THEOREM 1. The group I** actually coincides with I'**.
This answers affirmatively a conjecture of Atiyah-Hirzebruch [4].

We can restate Theorem I in a more convenient way using K-theory. Let %,; be the
complex cobordism group of real dimension 2k. The group %,, is canonically identified
with the stable homotopy group 7,; . ,x(MU(N)), where MU(N) is the universal Thom space
for complex N-dimensional vector bundles and N is large compared with k. Now the
Atiyah-Hirzebruch functor K gives rise to a homomorphism

p: R(MUWN)) > Hom(tt i+ sn(MU(N)), R(S?**2V))
defined by p(v)(x) = x*(v). In §4 it will be shown that Theorem I is equivalent to:
THEOREM IlI. The homomorphism p is surjective.

Theorem 11 is proved in §3. In §2 we discuss duality between the homology theory
K, and the cohomology theory K* both with coefficients in the unitary spectrumt. We also

+ In preparing the present paper, the author was made aware of an unpublished paper of D. W. Anderson
[1] in which the duality was thoroughly exploited. We treat it here only in a special setting.
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introduce a natural transformation H: n}( )-K,( ) from the stable homotopy groups

to the reduced K,-homology theory. Th1s transformation may be viewed as an analogue
of the usual Hurewicz homomorphism.

In §3, it is shown that the image of the homomorphism

T4 AT T ATNY

H: T oM UN)) = Ky oM U(N))
is a direct summand, the fact which implies Theorem II in virtue of duality.

In a subsequent paper some applications will be given. In particular, integral character-
istic numbers for closed oriented C*-manifolds will be determined.

§2. REMARKS ON K-THEORY

A spectrum E is a sequence {E,;neZ} of spaces with base points together with a

b P s

sequence of maps ¢, : SE, — £, preserving base points. Giving a map ¢, : SE, - u,,ﬂ
equivalent to giving its adjoint &,: E, — QF,.,; &(x)?) =¢,(, x). We follow G.

)
Whitahaad 161 far notiong nertainina to the homalaov theorv and the cohomolaov thenrv
YY 1Liivviivang lLUJ ANL RMIN/ VAV LA y\ll lullulle LA 2 ¢ L) IAVILLVLU&J tllvvl! CLLANS LRAW \Ivll\llllvlvs] SLlWWVR J

1 have to extend them on the category
for a finite CW-pair (X, A), its g-th

Vl

with coefficients in the spectrum E. However, we
of CW-pairs (not necessarily finite). Specificall
homology group H (X, A; E) is defined by

=
x<m

2.1 H (X, A;E)= lim =, (E, A (X[A)),
\ q I, tatn
n
whara lim meang tha diract limit of the direct systeam of ahelian oroune with tha hamao-
Wihere um means ot GIireCl iimitl o6 In€ GIrecl sysidm o1 aocian groups wiin i€ aomoe

morphisms
q+n\r‘ A (X/A)) '—'—' 7Iq+n+ 1\‘)‘3" A \A/IA)) = 75q+n+1\‘3‘n+1 A (X/A))
Similarly the cohomology group H% X, 4; E) is defined by
q . = h n—g,
2.2) HYX, 4; E) = lim [S""%(X/A), E,],

where [ , ] means the set of base point preserving homotopy classes.

We now pass to the K-theory. Let U be the infinite unitary group and BU a classi-
fying space for U. Since U is a countable CW-group we may assume that BU is a countable
CW-complex (cf. [11]). There is a natural homotopy equivalence

h,: U—Q(Z x BU) = QBU.

hy,:Z x BU- QU
due to Bott [7). The unitary spectrum U = {U,, u,} is defined as follows:
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The corresponding homology theory and cohomology theory are denoted by K, and K*
respectively. Since the unitary spectrum is an Q-spectrum and moreover periodic, the
definitions (2.1) and (2.2) take somewhat simple form in this case. Namely, the homology
is given by

(2'3) Kq(X’ A) = lim nq+2m(U2m A (X/A))y U2m =Zx BU’

m

since the groups 7, ,,(Up, A (X/A)) are cofinal in the direct system. Similarly, we have
2.4 Ki(X, A) = lim [S*™"4X/A), U,.], U,.=Z x BU.

m

We also notice that, in the cohomology case, the homomorphism
(2.5) [S"%X/4), U,] = [SS""UX/A), SU,} 4= [S"* 174X [A), U,y 4]

is an isomorphism.
This follows from the commutativity of the following diagram
[S""%X/A4), U,] == [SS""%(X/A), SU,]
(2.6) [ o
[S*7UX/A), QU, . ] = [SS""4X/A), Uny1],

where the bottom row is the usual isomorphism (cf. [16; (2.15)]) and #,, is an isomorphism
since #, is a homotopy equivalence. It follows from (2.5) that there are canonical identi-
fications:

(27) Kq(X’ A) = [X/Aa Uq]’
= [Szm_q(X/A)9 U2m]’ U2m =Z x BU.

This shows in particular that the cohomology theory K* is identical with the Atiyah-
Hirzebruch theory.

We define the Bott isomorphism
B: K,_:(X, 4) = K (X, A)
to be induced in the expression (2.3) by the identity
Ty-2420me (& X BU) A (X]A)) = 7, 0((Z x BU) A (X/A)).

The Bott isomorphism

2.9 B: KYX, A)— K7 XX, A)
is defined similarly. We also have a natural isomorphism
(2.10) a: KX, A) = RY(X/A) - R (S(X/A))

induced in the expression (2.7) by the identity
[S?m~9(X[A), Z x BU] = [S?*™~@*1)(S(X/A)), Z x BU).

Note that the inverse isomorphism « ™! is equal to (—1)?** times the suspension isomor-
phism o* used in [16].
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tp: 5 A(X/A) A (Y/B)— St A ((X/A) A (Y/B),
PS8t A(X/A) A (Y/B)—>(Sl A (X/A)) A (Y/B),
P’ -S‘ A (X/A) A (Y]B) = (X[/4) A (S* A (Y]B))
be the natural homotopy equivalences used in [16; (2.4)], where (Y, B) is also a finite

CW-pair. Then the compositions
o, =p* " op* ot K'((X/4) A (Y/B)) =K (S(X/4) A (Y/B)),

-1 7
o =p"* Vo p* oo R(X/A) A (Y/B)) >R F1(X/4) A S(Y|B))

are isomorphisms.
The cohomology theory K* has a product (cf. [5; §1.5])
.11 AKX, A)QKNY,B)» K" (X x ¥, Ax Yu X x B).
This product is associative and anti-commutative. Moreover there exists an element
1 € K°(x,) = K°(S®) which serves as the unit in the product (2.11).

The following lemma can be easily verified along the lines of [5; §1.5].

/D V/ AN as ! n\ Py A oy N _ . -~
K?(X/A) and y € K Y/B). Then the following identities hold.

a(x) Ay = (=Dl (x A y),
X A o(y) = ap(x A y),
B(x) Ay = B(x A Y),

x A B() = Blx A ).

T —a

x 2 A b ] Gh e
LEMMA (2.12). Let x €

P

In particular, we have
a(l) A y = (= Hlaly),
x Aa(l) = oc(x),
B Ay =B0),
x A B(1) = B(x).
Remark. Strictly speaking, the Boit isomorphism (2.9) may differ from the one given
in [5]. The Bott isomorphism in [5] is the multiplication by a™*(g) where g is a prescribed

venarator of B0 §2 while &
generator of K%(S?) = Z, while a?8(1) = +g. If one wants to make «?5(1) = g, one has only

to replace, if necessary, the homotopy equivalence h, : Z x BU - QU by —h,.
h

W oy anmaraliza tha hamalaoyv and cohamaloey thanry to ry

‘42‘.

We now gencirailze tac nomoidgy and <onomoiogy uncory Lo the Ca.“" ar

of ar ltr
CW-complexes. Let (X, A) be a CW-pair. The g-th homology group H,(X, A ;E)of (X, A
with coefficients in the spectrum E is defined by (2.1). It is easy to see that

(2.13) H(X, A;E) = lim H(X,, X, n 4;E)

f—

where X, ranges over all finite subcomplexes of X. From (2.13) or directly as in [16] it
follows that this actually defines a homology theory satisfying the first six axioms of
Eilenberg-Steenrod. The induced homomorphism f, and the suspension isomorphism o,
are defined as in {16].

As for the cohomology, the generalization will be limited on the cohomology theory

based on the unitary spectrum. The g-th cohomology group is defined by (2.7). Itis easy to
verify that this defines a cohomology theory satisfying the axioms of Eilenberg-Steenrod
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axcont tha dimencion axiom. The susnension isomornhism o is defined hv % — (— N2 +1,
MAWYI— LIk VHLLAVILIOIVILIL AAaldvialr 4 11w ouoy\.«AloAle AONVLIRAVL LALJ11L U A0 Uwilliwvil U.’ v \ 1} U,,
where o is given by (2.10). The Bott isomorphisms (2.8) and (2.9) are also valid in this

extended sense.

Moreover, from the expression (2.7) it follows that this cohomology theory is additive
n the sense of Milnor [12]. That is, if X is the disjoint union of CW-complexes X, then the

cohomology group K% X) is canonically isomorphic to the direct product IT,K%(X,). As a
special case of a theorem of Milnor on general additive cohomology theory [12] we get

LEMMA (2.14). Let X be a CW-complex. Suppose that there is a sequence of finite sub-
complexes X, = X, - with union X. Then the natural homomorphism

K%X) — lim K%X,)
Jm

is onto. The kernel vanishes whenever the natural homomorphisms K (X, .,) - K*"}(X,)
are onto for all n.

A CW-complex X will be called K*-admissible if it satisfies the following condition:
(2.15) The natural homomorphism
* : *
K*(X) - lim K*(X))

is bijective. Here the inverse limit is taken over all finite subcomplexes of X.

It is clear that if there is a sequence X; = X, < - of finite subcomplexes with union X
such that K*(X) —» lim K*(X,) is a bijection then X is K*-admissible.

B

LEMMA (2.16). (i) Let X be a CW-complex. If there is a sequence X, < X, < *+- of
finite subcomplexes with union X such that H¥(X,,; Z) are free abelian groups for all n and the
natural homomorphisms H¥*(X,.,; Z) - H¥(X,; Z) are surjective for all n, then the CW-
complex X is K*-admissible.

(ii) Let X and Y be countable CW-complexes. Suppose that both complexes X and Y
satisfy the condition of (). Then the product X x Y and the reduced join X A Y are K*-
admissible CW-complexes.

Proof. (1). The sequence

0— H*X X, Z)— H¥(

¥ S s iy Y 11",‘_1} T LA

X,

A PN
“ J

nt1s Ly A2

*Y 7Y s 0
\ 7 d

X, Z
is exact and the group H*(X, ., X,; Z) is without torsion by virtue of the assumption. It
mere Ala 4 Lanmn Vi mam ey o aa ral v L TTr%ks

follows that K* \An+1, ) is a free abelian group and ch: R AL, A ) — i1 \A,,+1, A,,, g
is an injective homomorphism (cf. [5]). Consider the commutative diagram

KX i1, Xp) £ KX 11)
ch ch

0—>H*(Xn+lan! Q) H (Xn+1’ Q)

where the bottom row is exact. Since j* o ch is injective. j*: KU(X,.,, X,) = KX, ,,) is
injective. Then the exactness of the cohomology sequence for K*-theory implies the sur-
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jectivity of KT (X, ,,) » K* !(X,). Therefore Lemma (2.14) applies and the group K4(X)
is canonically isomorphic to lim K% X,). Thus X is K*-admissible.

(ii). Let X; < X, < --- be a sequence of finite subcomplexes of X with union X and
let ¥, @ ¥, < --- be a sequence of finite subcomplexes of ¥ with union Y. If H*(X,; Z)
and H*(Y,;Z) are both free abelian groups and if H*(X,:,;Z) » H*(X,;Z) and
H*(Y,.,;Z) - H*(Y,; Z) are both surjective, then the Kiinneth formula implies that
H*( X,y x Y415 Z) > HXX, X Y5 Z) and H¥ X,y A Yui15Z) > H*(X, A Y,; Z) are
surjective homomorphisms and the groups considered are all free abelian. Since we have
assumed the countability of the CW-complexes X and Y, the product X x Y and the
reduced join X A Y are CW-complexes. Moreover X; x Y;, X, x Y,, -+ is a sequence of
finite subcomplexes with union X x Y. Similarly, X; A Yy, X, A Y,, '+ is a sequence
of finite subcomplexes with union X A Y. It follows from (i) that X x Y and X A Y are
K*-admissible. This completes the proof.

LEMMA (2.17). The CW-complexes U,, U, AU, U, AU, AU, SP AU, U, A S,
(8> AUY A U,and U, A (8% A U)) are all K*-admissible.

Proof. First consider the infinite unitary group U =\J,U(n). It is classical that
H*(U(n); Z) is free abelian and that H*(U(n + 1); Z) » H*(U(n); Z) is surjective. Hence
the CW-complex U is K*-admissible by (2.16). As a classifying space BU we may take the
limit space |J G, , where G, , = U(2n)/U(n) x U(n) is the complex Grassman manifold. It
is also classical that the sequence G, ; = G, , < --- satisfies the condition of (i) in (2.16).
Hence BU is K*-admissible. Therefore Z x BU is also K*-admissible. Then the complex
U, A U, is K*-admissible by (2.16) (ii). The remaining cases are treated similarly. This
completes the proof.

Now we shall prescribe a specific element in I?”‘*(Up ANUY=[U, AUy, Uyl Let
X, be a finite subcomplex of U,. We denote by 1,& K%(U,) = (U, U,] the element repre-
sented by the identity map U, — U,. The restriction of 1, on the subcomplex X, ; is denoted
by 1,,€KP(X, ). Consider the element

(0 A1) € n RP (X, n X)),

where X,; and X ; range over all finite subcomplexes of U, and U, respectively. By the
naturality of the product (2.11) the above element belongs to the inverse limit group
lim RP*4(X,, A X, ). Since the finite complexes X,; A X, ; have the whole U, A U, as
T
their union and since U, A U, is K*-admissible, we have a canonical isomorphism
RP*oU, A U) = lim KPP (X, A X, ).

-

i,j
Let 1, A 1, denote the element corresponding to (t,,,; A 1,.;) by this isomorphism. This
element 1, A 1, is the unique one which gives 1, ; A 1, ; when restricted on X,; A X, ;.

We will define the element ¢, , € [U, A U, U, ] by

ta= (=DM, A1,
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We often use the same notation ¢, , to mean a map U, A U, — U,,, representing the
homotopy class ¢, ,.

PROPOSITION (2.18). The homotopy classes t, , satisfy the following relations.
a4ty = Wp A Dty
0ty = (= DL A udt, 44y
Proof. Recall that ay is an isomorphism
Re (U, A U) = [U, A Uy, Uyl 5 [SU, A Uy, Uy e =K1 SU, A U,
Note also that the element 1,e€[U,, Uyl = K"(U,) is mapped by the isomorphism

«: R?(U,) - RP*(SU,) = [SU,, U,,,] to the homotopy class represented by the map
u,: SU, - U,,,. In other words, we have

(2.19) a(1,) = up(t,4 1)

Take finite subcomplexes X, ; = U, and X, ; = U,. Applying Lemma (2.12) to the element
1,0 A1, ;€ KPY4(X,; A X, ;), we have

OCL(lp,i A lq,i) = (_l)qa(lp,i) A lq,j7
where a(1, ;) € RP*1(SX,,). Since the union of the subcomplexes SX,; A X, ;= SU, A U,
is SU, A U, and the CW-complex SU, A U, is K*-admissible, we may pass to the inverse

limit to get the relation
arlt, A1) = (= 1)%(1,) A 1,

= (=D (tper) Aty
The first relation in (2.18) follows easily from this. The second relation is proved similarly.

Remark. Proposition (2.18) just means that the double sequence of maps t, ,: U, A U,
— U, 1, defines a pairing (U, U) — U in the sense of G. W. Whitehead [16]. 1t can be proved
that this pairing is associative and anti-commutative. The associativity means here that the
two maps U, A U, A U, = U, 4, defined by (x, y, 2) = 1,4 4.1, (%, ), 2) and (x, y, 2) -
tp.qa+¢(X; 1.y, z)) are homotopic, base points being preserved. The anti-commutativity
means that the map U, A U, —» U,,, defined by (x, y) = ¢, ,(», x) represents (— 1) times
the element ¢, € [U, A U, U,,,]. These facts come from the associativity and anti-
commutativity of the product (2.11) which supply the desired homotopies on finite sub-
complexes. We may pass to the inverse limit in virtue of (2.17) as in the proof of (2.18).

According to a general procedure due to G. W. Whitehead [16], the above pairing
defines several kinds of products in the homology theory K, and the cohomology theory K*.
Generalizations to the category of not necessarily finite CW-complexes are easy, except that
one must deal carefully with the cartesian product. However, the last point does not matter
when one deals only with countable CW-complexes.

We use the cohomology cross-product

A RA(X) @RYY) »R? "X A Y),
the /-product
[+ RPY(X A V) @K (Y) - KP(X),
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and the Kronecker index
<L R0 ®K(X) -K,_ (S0,
where X and Y are countable CW-complexes with base point.
It is easily seen that the cohomology cross-product coincides with the product (2.11)
when the CW-complexes X and Y are both finite, and that the commutation laws (2.12)
hold even in the extended sense. Commutation laws between the other kinds of products

and the isomorphisms «, § are obtained. In particular, the Bott isomorphisms B are com-
patible with all the products. For example we have the relations

(2.20) CBx), up = <x, )y = plx, up
for x € K ,(X) and u € K4(X).

We shall identify K,,(S°) =K ~2™(S° with the integer group Z as follows. First
Ro(S°) = R°(S®) is identified with Z by corresponding the unit element 1 to the integer 1.
Then K,,(S°) is identified through iterations of B. Of course K,,,+,(S%) =K~ 2"*1 ($% =0
by the Bott periodicity.

Under the above convention the Kronecker index becomes a homomorphism

<, iR X)RKR(X)-2Z,
and (2.20) becomes
(2.20y {Bx), up = <x, Bu)) = <{x, up.
Lemma (2.21). (i). Ifue K*(X),ve R Y)and y e K(Y), then
(u A )y = (=1 y, vu

@i). Ifu' e RP"Y(X), v e K8"(Y)and y € K(Y), then (u' A v')y =0.

This Lemma can be easily proved through examination of the definitions of products,
taking account of the associativity and the anti-commutativity of the pairing (U, U) - U.
The details are omitted.

Next we shall specify a generator g, of n(U,) = [S", U,] =K'(S"). We put g, =
1 € R°(S°) and define inductively g, by

gr = Of(g,_ 1)'
It is to be noted that
(2.22) 9r = U35(g,-1)-
We shall also write g, to denote a map S”— U, representing the element g, € n,(U,).

Following G. W. Whitehead {16] we define the sphere spectrum S = {8, ¢,} by taking
g,: SS"— S"*! to be the identity map. Then (2.22) just means that
(2.23) the sequence of maps g, . S" — U, defines a map of spectra g : S — U in the sense of [16].

The g-th homology group H,(X, A;S) of a CW-pair (X, A) with coefficients in the
sphere spectrum S is nothing but the g-th stable homotopy group ny(X/4). The map of
spectra g induces a natural transformation

H:H( , ;89-H( , ;U=K( , )
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Specifically, if X is a CW-complex with a base point and if x € n3(X) is represented by a
map f: 577" - S" A X, then H(x)e I?,,(X) is represented by the map (g, A 1) o f: S1*" >
U, A X.
The map of spectra g also induces a natural transformation
H:H( , ;9->H( , ;U=K%(, )

Here we work in the category of finite CW-complexes. If X is a finite CW-complex with a
base point and if u € HY(X; S) is represented by a map f: S""9X — S, then H(u) € K(X) is
represented by the map g, -/ : S" X - U,

LEMMA (2.24). Under the usual identification SP*9 = S? A S9, we have the relation
9p+q = (— l)pqu NG,
in KP*e(sP+9),
Proof. Apply a; to the identity g, = 1 A g,. Noting that a; =a in K(S° A §7) =
R7(S™) we get from Lemma (2.12)

a(g,) = (= (1) A g,
that is,
gi+»=(—Dg, A g,
This proves the case p = 1. The general case follows by induction from this and the associa-

tivity of the cross-product.
LEMMA (2.25). The following diagram is homotopy commutative
SPAU, 22 U, AU 28 U A ST

AN /

N\ /

N\ . //
ny, ”n
pq \ g / e

\, /
\ .//
Up+q
where the map n, , is the composition
P Sp-1y p—1 SP~2ug+1 Su -
SPAU, ——"5 S AU —5 . = SUp o =55 Uy,

and the homotopy class of n, o is represented, after being multiplied by (— 1), by the map
(x, ) = 1g,5(¥> X)-

Proof. The homotopy commutativity of the second triangle follows from that of the
first and the anti-commutativity of the pairing 7, ,: U, A U, - U, ..

To prove the homotopy commutativity of the first, we proceed by induction on p.
By the definition of the cohomology cross-product, the map 7,,.(g, A 1,) represents
(—1)%g, A 1,6 RP*9(SP A Up) = [S? A Uy, Upig]. We denote by the same letter n,,, the
homotopy class represented by the map. Then the desired homotopy commutativity means
the relation

nye=(—=1"g, A1,
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Now

(=Dgy r=(=Dxl) A1,
=a;(l A1), by(2.12),
= a(,)
= u;(1,+1), by (2.19),

= nl,,.

This proves the case p = 1. Suppose inductively that the above relation holds for all gq.
Under the natural identification SP*! A U,_; = S” A (S' A U,_,), we have

Hpt1,49-1= (1A uq—l)*(np,q)‘
The inductive assumption yields then
Rpi14-1=(—D"g, A u:—l(lq)
= (= 1), A a(1,_y), by (2.19),
=(=1)"g, A((=1)""'gy A1), (case: p=1),
= (=17 g, A gy) Ay
=(=DEVaNg Aty by (2.29).
This completes the induction.

The double sequence of maps n,,: S° A U, - U,,, forms a pairing (S, U)— U and
hence induces several products (cf. [16]). Among these we need the /-product

[:HPY(X A Y;S)®K(Y) - KP(X)
and the Kronecker index
<y D H X S)@KUX) - R, (S0

Here X and Y are CW-complexes with base point which are assumed finite in the case of
/-product. As before we shall regard the Kronecker index as a homomorphism

¢ YiH(X;S) KX~ Z.
As a direct consequence of Lemma (2.25) we have
LEMMA (2.26). The following two diagrams are commutative.
BMX A Y;8)® R(Y) > RA(X)
o1
RP"X A Y)® R(Y) > R(X),
AX;8)® Ri(x)t— 2z
H®1
R (X)® R(x) *—2 Z.

For later use we deduce some consequences from Lemma (2.26). We denote by
5, € H,(S7, S) = n3(S?) the element represented by the identity map S*— S?. We also
denote by s; € HP(S?; S) the element represented by the identity map.
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YN YV L. ~
LA:MMA \<.27). 146! A V€ U
~
€

point preserving map. Let x

e hoeon panis
A VV”" vust PU”H

i a
H,/(X,S) = (X ) be represented by
CH(x), v) = {sp, [*0).

e CP .V Lo 2 hoaco
« TP A UE U DU

en, for any v e K%(X),

In fact,
(H(x), vy = <{x,v), by (2.26),
= (fuls), )
= {8, f*v).
ProOPOSITION (2.28). Let X and Y be finite CW-complexes with base point, and let
u: Y A X—> 8" be a duality map in the sense of [14]. Then the homomorphism
u*g,) : K,(X) = K"""(Y)

is an isomorphism, where g, € K"(S™) is the generator prescribed before.

T fant hy MNA&. 7Q
il raii, Uy |10 . 10

l‘J

Lnaw that tha hamamarnhicom
RNITUVYY LILAL LIV 1HIVLIIVERIIVL JISIVE S

uts,| : R,(X) > R"2(Y)
is bijective. Now H(s,) = g,, so that the homomorphism u*g,/ coincides with u*s,/ by (2.26).

N e
Jl» WL

We come now to the duality theorem. Let X be a CW-complex with base point. The
Kronecker index

¢, YRR -2

induces a homomorphism

defined by

Y(U) = < » U>'
THEOREM (2.29). Let X be a finite CW-complex with base point. Suppose that the
cohomology K*(X) is torsion free. Then the homomorphism

y : KYX) » Hom(R (X), Z)
is a bijection.

Proof.

Tat 4 hae a finita ' _camnlay with haca naint We shall write P (AN Far tlhn

LTy l-a\tb L1 UV G LLLLG U7 TVULLLPIVA Wilil vdow pPuUitdlt. YY& Snidii yWilly l\q\fl} 1UL LIC
group Kq(A) factored by its torsion subgroup. Similarly we set K"(A = K% A)/torsion
The cohomology cross-product, the /-product, and the Kronecker index induce naturally

F U S T - e = TR

homomorphisms
AR @RUY) 5 RPYUXY A Y)

P N W B VY VAN PLANANY &5 )

[: R?H(X A Y)® R(Y) ~ R¥(X),
YRR 2.
The formulas in Lemma (2.21) hold also in this sense.
To prove the theorem we may assume g = 0 or ¢ = 1 in virtue of (2.20)".
Let Y be a 2n-dual of Xandletu: ¥ A X — S?" be a duality map. The homomorphism

u*QZn/: Kq(X) — KZn—q(Y)
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is a bijection by (2.28). From the naturality of the Bott isomorphism with respect to the
product it follows that the homomorphism

u*ghl: Ry(X) — R™9(Y)
is also a bijection where g5, € K°(S*") is a generator. Hence the homomorphism
w/ 1 Ry(X) - R~4(Y)
is a bijection where w denotes the image of u*g), € K%(¥ A X)in R%(Y A X).

Now, since K*(X) is torsion free, it follows from the Kiinneth formula for K-theory
due to Atiyah [2] that the cross-product gives a direct sum representation

R(Y A X)2KY(Y)®K(X) + K YY) ® K'(X).
This leads to a natural isomorphism
RY A X)=K%(Y) ® R°(X) + R "}(Y) ® R\(X).
Let {a;}, {b;}, {c;} and {d;} be free bases of K°(Y), K~'(Y), R°(X) and KR*(X) respec-
tively. Let we R°(Y A X) correspond to
Lmya ®c; + Y b ® dy
by the above isomorphism. Then, for any x € K (X),
W/)C — { Z mlj<xa cj>a|'s lf q= 0’
—Z nkl<x’ dl>bk’ if q= 15

by (2.21). Let {e/} be a base of K (X). Then the matrix corresponding to the isomorphism
w/ with respect to these bases is

{ (mij) ' t(<es9 Cj>), lf q = 0
—(ny) - "Ke, dp), if g=1.
This matrix has determinant +1 since w/ is an isomorphism.
Two conclusions follow from this. First,
rank R°(Y) < rank K°(X),
rank K~1(Y) £ rank R'(X).
Since X and Y are 2n-dual to each other the roles of X and Y are reciprocal, and we must
have the equalities
rank K°(Y) = rank R°(X),
rank K~!(Y) = rank K}(X).
Second, since the matrices (m1;;), ({e,, ¢;>) etc. are square matrices as remarked just
above, the determinants of these matrices must be +1.
On the other hand the matrix corresponding to the homomorphism
y 1 RUX) = RA(X) - Hom(R (%), Z)
with respect to suitable bases is

{((es: Cj>)1 if q =0,
(<e35 dl>)’ if q= 1.
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Since this matrix is integral and has determinant +1, y is an isomorphism. This completes
the proof.
o Y e N R Ta Y T o8 V Lo o VA rnzmamdoy viiith Bace naint  Simnacs tlhné thown ic ~
CORULLARY \2.0v). L€l A vE€ d CW-complex with base putlu uu[/[/u.)r inge in€re is a

sequence X, < X, = *-- of finite subcomplexes with union X such that K*(X,) is torsion
frpp for all n. Suppose moreover that X is K*-admissible. Then the homomorphism

£c oy LU PO FRoreeled 121424 Die. THEN IR AOrronoy

v : RY(X) > Hom(K (X), Z)

Proof. By the assumption and Theorem (2.29),

v VT 7Y [ T N

7 KH(X,) = Hom(K(X,); Z)
for all n. It is easy to see that this induces a natural isomorphism
Iz lim K%X,) = Hom(lim K (X,), 2).

lexac Y ig
1eXes S X,

lim Ky(X,) = K(X)

by (2.13). Also since X is K*-admissible by assumption,
lim K4(X,) = K(X).

n

This completes the proof.

Finaily we consider the K,-homoiogy of the Thom compiex of a compiex
vector bundle. Let X be a connected CW-complex and let £ be a complex vector

f1 Aol Tat V€I ta tha Thawma o
mMeEnsion g. 1L.eL A~ acnoic the Thom \,Ompxex of f Let x be

any point of X. Then the inclusion map i:S% = x%— X° represents a generator
se A, (X5 8) =nj (X2 Z
qz L 2g\ 7
Lemma (2.31). With the above notation, the element H(s) € K, (X*®) is not divisible by
any integer other than +1
Proof. Let X, be a connected finite subcomple of X. The inclusion X¢ < X* induces
a natural isomorphism I;' 24X 8 = A 24(X*%; S). We regard s as an element of 7,(X3 8).

an e
Now, it is known that there exists an element v € K*4(X?) such that i*v = g,, € K*%(5%9)
(see for example [6]). Hence
(s i*v) = £ 1.

Ciomrnn 7 o — o T amemna D 97\ vialde
DN l*DZq — J, LAdlIA \I--l- I} Aviun
{(H(s),v) = +1
. e o
This implies that H{s) }ct\zq\A X%y is not divisible by any integer # +1. Since qu(Xé‘

=t
8 o

= lim K, (X3), the naturality of H implies that H(s) € K,,(X*) must not be divisible by any

integer # +1.

Remark. If we assume moreover that the group I?ZQ(X %) is finitely generated or free
abelian, then Lemma (2.31) says that the homomorphism
H:H, (X% 8) > K, (X%
is a bijection onto a direct summand.
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§3. PROOF OF THEOREM 1I

Let BU(N) be a classifying space for the unitary group U(N) and let MU(N) be the
Thom complex of the universal complex vector bundle &y over BU(N). We may assume
that BU(N) is a countable CW-complex so that MU(N) is also a countable CW-complex.

LeMMA (3.1). The homomorphism
y : K(MU(N)) » Hom(R (MU(N)), Z)
is a bijection. The group K(MU(N)) is a free abelian group.

Proof. We may take the limit space |J G,y as a classifying space BU(N), where
G, n = U(n + N)/U(n) x U(N) is the complex Grassman manifold. MU(n, N) will denote
the Thom complex of the universal bundle ¢y restricted on the subcomplex G, 5. Then
MU(,N)c MUQ2,N)c<--- is a sequence of subcomplexes with wunion MU(N).
H*(G, y; Z) is free abelian and the natural homomorphism H*(G,+; n; Z) = H*(G, x; Z)
is surjective. Using the Thom isomorphism, we see that H*(MU(n, N); Z) is free abelian
and the natural homomorphism H*(MU(n + 1, N); Z) > H¥(MU(n, N); Z) is surjective.

Hence the group K*(MU(n, N)) is also free abelian. In particular the CW-complex MU(N)
is K*-admissible by Lemma (2.16) and we can apply Corollary (2.30) to conclude that

v : R{MU(N)) > Hom(K (MU(N)), Z)
is bijective.
To prove the second statement we may proceed directly using the spectral sequence
connecting Hy(MU(N); Ky(xo)) to K (MU(N)) (cf. [10]). However we argue here as fol-
lows. Using the spectral sequence we see that Kq(M U(n, N)) is a free abelian group of

finite rank. Let i: MU(n, N) - MU(n + 1, N) denote the inclusion. Then the commutativ-
ity of the diagram

RYMU(n + 1, N)) — Hom(R(MU(n + 1, N)), Z)
i* i* =Hom(i,, )
RYMU(n, N)) —— Hom(K (MU(n, N)), Z),
together with the surjectivity of i* implies that the homomorphism
iy : R(MU(n, N)) » K(MU(n + 1, N))

is a bijection onto a direct summand. Therefore the direct limit lim K (MU(n, N)) =
—>

R (MU(N)) s a free abelian group.
Now suppose k < N. Then the homotopy group 7, ,5(MU(N)) is stable, that is,
ks 2 (M UN)) = 734 4 ;n(MU(N)) = Hop 1 ,n(MU(N), S).
THEOREM (3.2). Suppose k < N. Then the homomorphism
H : Ty sn(MUN)) = B4 2n(MU(N))

is a bijection onto a direct summand.
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Assuming (3.2)
we get

CoroLLARY (3.3). Suppose k < N. Then the homomorphism

K* +2N(MU(N)) LHom(IZZH WMU(N)), Z) "5 Hom(myy 1 ;n(MU(N)), Z)

is surjective, where H* = Hom(H, )= . H is the composition by H from the right.

Indeed, y is a bijection by (3.1) and H* is surjective since A is a bijection onto a direct
summand by (3.2). Therefore H¥ oy is surjective.

Now Theorem Il is proved as follows. Let x € m,, , ;(MU(N)) and v € R** *2¥(MU(N)).
Then,

(H*oy(0))(x) = (H(x), v},
= (Szk+2n> X*()), by (2.27).
Therefore, if we define the homomorphism
p: K2 +2N(MU(N)) — Hom(myy . ;n(MU(N)), K* +2N(52k +2N))
by
p)(x) = x*(v),
then we get
(H*:y(0))(x) = Saks2ns P)(X))-

Since H*.y is surjective by (3.3) and since the Kronecker index . ,n(S**M)®
R?k+2N(§2k+2Ny , 7 is a dual pairing, this relation implies that the homomorphism p is
surjective. From the naturality of the Bott isomorphism it follows that the homomorphism

We consider the double sequence of groups
Tag+n+1+m Uz A MU(N + m)), Un=2Z x BU,
indexed by pairs of integers (/, m) with 0 < [, 0 < m.

Let
¢1,m§ﬂz(k+N+z+m)(Uzt A MU(N + m)) — Tag+n+1+1+mUzge1y A MUN + m))
be the composition homomorphism w414 o S o Uy o S.

There is a map (unique up to homotopy) f: BUN + m) — BU(N + m + 1) such that

*imt1 = Enem @ 1, where 1 is the trivial complex line bundle. The Thom complex of

Ex+m @ 1 is naturally homeomorphic to the double suspension S2MU(N + m). The bundle
map Eysm @ 1 = Enim+, induces a map

by : SPMUN + m) > MUN + m + 1).
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n2(k+N+l+m)(U21 A MU(N + m))————» nz(k+N+l+m+l)(U21 A SZMU(N + m))
oy Toa+rN+1+m+ 1)Uz A MU(N + m + 1))

Then it is easily seen that

(34) ltbl+1m°d)lm ¢lm+1 °lplm'
£ AN '.._..1_‘-.._ T P . L T ALTTLAT o
(3.4) implies that the double sequence of groups 7‘2(k+N+l+m)\U21 A MU(N + m))
together with homomorphisms and their possible compositions) forms a direct

system. From the definition we gee immediatelv that
SICM om ¢ denm Wwe SCC Tmmedialely tnat

Sy S . L1V il [ 35034

(3.5) the partial direct limit hm T+ N+1+m( Uzt A MU(N + m)) is nothing but the homology

group K2(k+N+m)(MU(N + m))

Let 011 (X)) denote the reduced homology group of a CW-complex X having base point

Rt - MoJ O

with coeﬂiments in the spectrum

Then it is also immediate that
(3.6) the partial direct limit im 7tyg 45 414m(Us A MU(N + m)) is the homology group
—_—

I +'\(Z x BU)
The groups Lim mygsnsr4m(Uz A MUWN + m)) = Kogesnam(MUN + m)) form a
—

direct system in a natural way. Also the groups lim 7,4 n+14m(Us A MU(N + m))
——

3

P (7 o DI favin a disant cuctan and wa haowva

- "ltz(k.'. )\L X DU} ITULH1 a uiiovt b_yDLC 11, allll wWe llave

(3.7) im 754 v r14my(Uzg A MUN + m)) = 1im Ky g4 v+ m(MU(N + m)),
m.l m

We shall denote the total direct limit (3.7) by K, (MU).
At this point we turn to the multiplicative property of the complex bordism homology
theory (cf. [9]). There is a map (unique up to homotopy)
£ BU(p) x BU(g) - BU(p + q)

N1/ 17

such that f *€p+q = ¢, x &,. The Thom complex of the vector bundle £, x £, being naturally
.......... $n tha wadiiand indn ALTI S A AT 2Y tha hundla man F v F L £
llUlllCULll.UlPulb L0 i IdulCu jUNl MUY A HEUVY), UWUIL UULUIC diapy Gp A 5537 Cpyg

induces a map

1 P ALTTS ALTTL

by, MU(@p) A MU{(g) = MU(p + 9).
The maps b, , give rise to a pairing (MU, MU) — MU _This pzfliring ?n t‘urn gfves rise to
products in the homology and cohomology. In particular we have the homology cross-
product

U X)) ® ULS®) > Ui X)-
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We simply write xy to denote the cross-product of x € %,(X) and y € %,(S°). If f: SP*?¢
— X A MU(s) represents x € %,(X) and if h: S9%% > MU(f) represents y € %,(S°), then
their cross-product xy € ”ilp+ JX) is represented by the composition
Spratasdn . gp¥ds A gat2t _Jah (X A MU(s)) A MU — X A (MU(s) A MU(D))
Labuty ¥ A MU(s + 1),

where the second map is a natural homotopy equivalence [16; (2.4)].

Taking X = S°, the group %, =Y., %,, U, = %,(S°), becomes a commutative, asso-
ciative graded ring with unit 1. This is nothing but Milnor’s complex cobordism ring.

Morcover the cross-product makes the homology group U(X) = Zﬂ}‘,(X ) a graded (right)
% .-module.

Now we see that
(3.8) the natural homomorphism ¥ 1, s1(Z x BU) = Uyq 41+ ,(Z % BU) is a U y-module map.

The verification of (3.8) is immediate. It reduces to the compatibility of the cross-
product with induced homomorphisms and the suspension isomorphism.

Let g, : S°—Z x BU represent 1 € K%(S°®). Then, analogously to (3.8) we see that
(3.9) the natural homomorphism gy : U4 (S®) ~ U 3 (Z x BU) is a Ux-module map.

Suppose now k < N and consider the homomorphism
H : Ty g n(MU(N)) ~ K2k+2N(MU(N))a
or more generally
H: Ty i 284 m(MUN + m)) - Bors v +m(MUN + m)).
Since the homotopy group 7,y +m{(MU(N + m)) is stable the homomorphism H is
simply the composition
Tk + 2v+my(MU(N + m)) 2 Aok 2v+m((Z X BU) A MU(N + m))
— Kok 2y +m(MUN + m))
where the second homomorphism is the natural map to the direct limit group.
On the other hand the direct system
w2 v +m(MUN + m)) - Tok+2v+m+ n(MUN +m+ 1)) > -+
is stable, that is, we have a canonical isomorphism
Tkt 28 +m(MUN + m))= Uy

Therefore the homomorphism H can be interpreted as a homomorphism H: %, —
1’4 2t 20+ m(MU(N + m)), and we have the following commutative diagram:

K2k+ ZN(M U(N))

(3.10) " H K2k+2]N+M)(MU(N + m))

— = ~ ~
%2;‘ _’“’a]le(Z X BU)—> %2(k+l)(z X BU) hund sz(MU).

Gox
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We now quote a theorem of Milnor on the structure of cobordism ring %, (cf. [13, 15]).

THEOREM OF MILNOR (3.11). The ring U, is a polynomial ring over Z with generators
M, €%,,

Furthermore, according to Conner-Floyd [8, 9], we have

PROPOSITION (3.12). %, (Z x BU) is a free graded U ,-module.

Let H, denote the composition
Uy 22 Yo (Z x BU) — Uyges(Z x BU),
and let H, denote the composition
U~ Uy (Z x BU) — R, (MU).
H) is a U4-module map by (3.8) and (3.9).

For the proof of Theorem (3.2) it suffices to show the following proposition.
(3.13) Let x € U, be an element not divisible by any integer other than +1. Then H{(x) €
U +1(Z x BU) is not divisible by any integer other than *1 for any I.

In fact, if (3.13) holds, then passing to the direct limit K, (MU), H,(x) is not divisible
by any integer # +1. It follows from the commutativity of the diagram (3.10) that
H(x) € Ky, ,n(MU(N)) is not divisible by any integer # +1. Since %,, is a free abelian
group of finite rank by (3.11) and since K, , ,5(MU(N)) is a free abelian group by (3.1),
this implies clearly that the homomorphism H : %,; = K, ,x(MU(N)) is a bijection onto
a direct summand. This proves (3.2).

We now proceed to prove (3.13). First, the case k =0. %, is generated by 1. By the
isomorphism %o = Ty 4 3y +m(MU(N + m)), the element 1 corresponds to s. By Lemma
(2.31), H(s) e K+ 208 +m(MU(N + m)) is not divisible by any integer other than +1. Since
this is true for any m, the image H.,(1) of H(s) in the direct limit K, (MU(N)) is not divisible
by any integer # +1; afortiori H,(1)is not divisible by any integer # +1.

Let {a,} be a homogeneous % -base of U(Z % BU) (cf. (3.12)). If Iis fixed, then we can
write uniquely Hy(1) € %,(Z x BU) as a finite sum

Hl(l) = 2 a,-xi, xi € %*.
If dis an integer dividing x; for all i, then d must be equal to +1, as proved just above,

Take any k and let x € %,; be an element not divisible by any integer # +1. Since
H, is a % ,-module map, we have

Hy(x)=H(1) x =Y axx.

Suppose that an integer d divides x,x for a fixed i. Then, since %, is a polynomial ring over
Z, d must divide x;. Now if dis an integer dividing H,(x) then d divides x;x for all i. Thus
d divides x; for all i. Hence d = +1. This proves (3.13) and completes the proof of Theorem
(3.2).
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§4. DEDUCTION OF THEOREM 1

Let 1 € [BU, BU] denote the element represented by the identity map, where [ , ]
means the set of base point preserving homotopy classes as before. Note that

[BU, BU] = [BU, Z x BU] = K°(BU).
Set 8 = —1 € [BU, BU]. We write § also to denote a map BU — BU representing the homo-
topy class 6. Let X be a connected finite CW-complex with base point. Then
[X, BU) = [X, Z x BU] = K°(X).
Let x € [X, BU] = K% X). The it is clear that
4.1) 8.x=—xeKX).
(4.1) says that, for a stable complex vector bundle x over X, 8 o x is its inverse stable bundle.

Now, since the CW-complex BU is K*-admissible, an argument similar to the proof of
Proposition (2.18) using (4.1) proves the following equality:
4.2) 6.6 =1¢[BU, BU].
From (4.2) it follows that
4.3) g* : K%BU) —» K%(BU) is an involutive ring auto-
morphism,

g* . H**(BU) - H**(BU) is an involutive ring auto-
morphism for any coefficient
group.

Let ¢, denote the n-th Chern class of the universal U-bundle over BU. Then (4.1) and
the product formula for Whitney sum yield
4.4) (T4 +cy+ )1 +0%c) +0*¥cr)+-)=1.

Since the cohomology ring H**(BU; Z) is a ring of formal power series over Z with genera-
tors ¢;, 3, C3, ..., the formula (4.4) completely determines the automorphisms 6* : H**
(BU; Z) —» H¥*(BU; Z) and 6* : H**(BU; Q) - H**(BU; Q). In particular, for the uni-
versal Todd class 7 € H**(BU; Q), we have

4.5) 0T H=9.
If we write formally

Le +e+=[]J+1),

then the Todd class .7 is given by

L
f:Hl_e_ti.

i

Now let M be a connected closed weakly almost complex manifold of real dimension
2k imbedded in a sphere $*** 2N with k < N. Let v: M — BU(N) be the normal map of the
imbedding and let ©: M — BU be the stable tangential map of M. The composition
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v
M — BU(N) — BU will be denoted by

by (4.1), we have

Therefore, for any element v € H**(BU; Q), we have
(4.6) THv) = p*(0*(v)).

Our task is to seek the subgroup 7?* of H**(BU; Q) introduced in §1. It is equivalent
to seek its transform 6*(12*) by the automorphism 6*. From (4.6) it follows that
(4.7) the subgroup H*(TZ"\ consists of those elements v such that {IM), u*(v)> € Z for any
connected closed weakly almost complex manifolds M.
Here ( , ) denotes the usual Kronecker index and [M] denotes the fundamental class
of M. Itis clear that we may restrict our attention to connected manifolds.

The natural homomorphism H¥*(BU; Q) » H**(BU(N); Q) is bijective in the dimen-
sions <2k, so that in this range of dimensions we may identify both. Under that convention
we may replace u*(v) by v¥(v) in (4.7).

Let x: S%*2¥ , MU(N) be the map obtained by the Thom construction from the

imbedding M < S%**2N, Then we have the following commutative diagram:

H*(BU(N)) = H**(M)
=l¢ ;¢¢
H2k+ 2N(M U(N)) x* H2k+ ZN(SZk+ 2N)
in which ¢ are the Gysin-Thom homomorphisms, both being bijective. This holds for the
coefficient groups Z and Q.
In view of this and (4.7), we see that
(4.8) the subgroup $O*(I**) = H***N(MU(N); Q) consists of the elements ve H***2N

e AT TSR

(MU(N); Q) such that {85415, X¥(0)) € Z for any x € Ty 1 35 M U(N)).
Consider the following commutative diagram:
ROMUN)) —2> Hom(mz,. ;M MU(N)), RO(S**2))

chic+n chi+ny =Hom( , chi+nN)

H ZN(;\/IU(N); 0) _:_> Hom(n2k+2N(MU€N)), H2k+2N(Szk+2N; o),

where the homomorphism in the first row is defined in §1, and the second row is defined
by the analogous formula
P)(X) = X*(0).

The homomorphism ¢k, y is the 2(k + N)-dimensional component of the character homo-
morphism ch. The second row is an isomorphism. This follows from the fact that the usual
Hurewicz homomorphism 74,4 ,y(MU(N)) ® Q = Hyy o oxn(MU(N); Q) is an isomorphism.

Now (4.8) just says that the subgroup GO*(I*) corresponds to the subgroup
Hom(m 4 :2n(MU(N)), H NSV 7)) of Hom(n2k+2N(MU(N)) HA T EN(g2k* 2N, o)

ccidk 2NN »72k + 2N/ 28+ 2N,

by the isomorphism p. Also we know that cfy , y(RO(S¥¥2¥)) = F2*+2¥(§2**2¥ . 7). Hence
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Tn abknve dioors ha £l nasin
Nn€ aovove aiagram induces the followi

and the second column are isomorphisms:

R (MUN)) ~2 Hom(m 1 ,M(MU(N)), K°(8** "))
chic+N chi+N#

PO (1) —2 Hom(nyy 1 ;sf(MU(N)), H***2N(8% 2%, 2y).

-

153
(@)
[}
=
=
£
:
=
(¢
[N
j=red
[

aQ
=y
I
=
-
=
b-21
-
=
[¢)
=

In other words,

4.9 chy s N(KO(MU(N)) = p6*(1*).
We now apply the differentiable Riemann-Roch theorem. K°(MU(N)) is a free
K°(BU(N))-module on one generator u, and we have

(4.10) ch(y-u) = ¢p(ch(y)- T 1),

for y € K%(BU(N)). (See for example [6]. This type of theorem is usually proved for finite
CW-complexes. In the present case, we may pass to the limit because of the K*-admissi-
sility of BU(N) and MU(N). )

ere ch(BU(N)) is the image of ch: K°(BU(N)) - H**(BU(N); Q). We see easily that
nrmn 270/ DTTI AT 1s7nrn g-—1 ST TS AT

K°(BU) - K*(BU(N)) is surjective. Hence, the homomorphism ¢Ai{(BU) T~ - ch(BU(N))-
F ~1is also surjective. Therefore we have

4.11) O*(I*%) = y(ch(BU)- T 7).
Apply 6* to both sides of (4.11). By (4.3), 6*2 = 1, and ch(BU) is invariant under 6*.
Taking account of (4.5) we finally get
** = u(ch(BU)- 7).

This is precisely the statement of Theorem I.
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