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01. INTRODUCTION 

LET M be a closed weakly almost complex manifold of real dimension 2k and let t : M + BU 

be its tangential map. For an element u of HZk(BU; Q) we let correspond the value of T*(O) 

evaluated on the fundamental class of M. This correspondence defines a homomorphism 

cr(M) : H2k(BU; Q) --f Q. 

Let Zzk be the subgroup of Hzk(BZJ; Q) consisting of those elements which are mapped by 

a(M) into the integer group Z for any closed weakly almost complex manifold M. 

The purpose of the present paper is to determine explicitly the group 12k. To state the 

result, we denote by ch(BU) the image of Atiyah-Hirzebruch group K(BU) in H**(BU; Q) 

by the character homomorphism. Also, the universal Todd class will be denoted by T. 

Then 2k-dimensional components of elements of the form y+Y with y belonging to ch(BU) 

constitute a subgroup Ilzk of Hzk(BU; Q). Now, the differentiable Riemann-Roth theorem 

due to Atiyah-Hirzebruch [3] implies that the subgroup I’2k is contained in ZZk. Our result is 

summarized in the following : 

THEOREM I. The group ZZk actually coincides with IIZk. 

This answers affirmatively a conjecture of Atiyah-Hirzebruch [4]. 

We can restate Theorem I in a more convenient way using K-theory. Let %2k be the 

complex cobordism group of real dimension 2k. The group @2k is canonically identified 

with the stable homotopy group n 2k+&MU(N)), where MU(N) is the universal Thorn space 

for complex N-dimensional vector bundles and N is large compared with k. Now the 

Atiyah-Hirzebruch functor K gives rise to a homomorphism 

p : &WY(N)) + Hom(n,,+,,(MU(N)), i?(S2k+2N)) 

defined by p(v)(x) = x*(u). In $4 it will be shown that Theorem I is equivalent to: 

THEOREM II. The homomorphism p is surjective. 

Theorem II is proved in $3. In $2 we discuss duality between the homology theory 

K* and the cohomology theory K* both with coefficients in the unitary spectrumf. We also 

t In preparing the present paper, the author was made aware of an unpublished paper of D. W. Anderson 
[l] in which the duality was thoroughly exploited. We treat it here only in a special setting. 
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introduce a natural transformation H : $( ) +Rk( ) from the stable homotopy groups 
to the reduced X,-homology theory. This transformation may be viewed as an analogue 
of the usual Hurewicz homomorphism. 

In 93, it is shown that the image of the homomorphism 

H : G+zNWW)) -&+,,WWO) 

is a direct summand, the fact which implies Theorem II in virtue of duality. 

In a subsequent paper some applications will be given. In particular, integral character- 
istic numbers for closed oriented P-manifolds will be determined. 

$2. REMARKS ON K-THEORY 

A spectrum E is a sequence {E,; n E Z} of spaces with base points together with a 
sequence of maps E, : SE,, -+ E,,,, preserving base points. Giving a map E, : SE,, + E,,,, is 
equivalent to giving its adjoint E,, : E. + QE,,,, ; &(x)(t) = q,(t, x). We follow G. W. 
Whitehead [16] for notions pertaining to the homology theory and the cohomology theory 
with coefficients in the spectrum E. However, we shall have to extend them on the category 
of CW-pairs (not necessarily finite). Specifically, for a finite CW-pair (X, A), its q-th 
homology group H&X, A ; E) is defined by 

(2.1) H&X, A ; El = 5 ~q+n(~n A (X/A)), 

n 

where lim means the direct limit of the direct system of abelian groups with the homo- 
morphisms 

nq+n(En A (X/A)) --% ~~+n+i(S& A (X/A))“; nnq+n+r(&+r * (X/A)). 

Similarly the cohomology group Hq(X, A; E) is defined by 

(2.2) Hq(X, A; E) =lim_ [S”-q(X/A), E,], 

n 

where [ , ] means the set of base point preserving homotopy classes. 

We now pass to the K-theory. Let U be the infinite unitary group and BU a classi- 
fying space for U. Since U is a countable C W-group we may assume that BU is a countable 
C W-complex (cf. [l 11). There is a natural homotopy equivalence 

h,: U+Q(Zx BU)=l-lBU. 

We also have a homotopy equivalence 

h,:ZxBU-,RU 

due to Bott [7]. The unitary spectrum U = {U,, is defined as 

BU, 

U - K 2m+l- 

a2m=h,: U2,,,+fJU2,+1, 

fi2m+1= h, : U2m+1+ Qu2,+2. 
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The corresponding homology theory and cohomology theory are denoted by K* and K* 
respectively. Since the unitary spectrum is an Q-spectrum and moreover periodic, the 
definitions (2.1) and (2.2) take somewhat simple form in this case. Namely, the homology 
is given by 

(2.3) &(X9 A) = lim_~q+Zm(% A (X/A)), UZm = Z x BU, 

m 

since the groups rcq+ J U,, A (X/A)) are cofinal in the direct system. Similarly, we have 

(2.4) P(X, A) = 3 [S+q(X/A), U&J, U,, = Z x BU. 

m 

We also notice that, in the cohomology case, the homomorphism 

(2.5) [S”_yX/A), U,] -5 [S&s”-4(X/A), SU,] = [S”“_B(X/A), U,+J 

is an isomorphism. 

This follows from the commutativity of the following diagram 

[S”_“(X/A), U,] --L [SS”-q(X/A), SU”] 

(2.6) 
I 

-n 
I 

[S”-&: RU,, 1, E cSS~-q(x;;), u,, l-J, 

where the bottom row is the usual isomorphism (cf. [16; (2.191) and tinI, is an isomorphism 
since fi, is a homotopy equivalence. It follows from (2.5) that there are canonical identi- 
fications : 

(2.7) K4(X, A) = IX/A, U,l, 
= [pm WA), U,,l, U,, = Z x BU. 

This shows in particular that the cohomology theory K* is identical with the Atiyah- 
Hirzebruch theory. 

We define the Bott isomorphism 

B : &-AK 4 --f &(X 4 

to be induced in the expression (2.3) by the identity 

x4-z+z(m+& x BU) A (X/A)) = ng+2rn((Z x BU) A (X/A)). 

The Bott isomorphism 

(2.9) j? : F(X, A) -+ Kq-‘(X, A) 

is defined similarly. We also have a natural isomorphism 

(2.10) tl : P(X, A) = R’I(X/A) -+ Rq “@(X/A)) 

induced in the expression (2.7) by the identity 

[Szm-4(X/A), Z x BU] = [S2m-(q+1)(S(X/A)), Z x BU]. 

Note that the inverse isomorphism cl-l is equal to (- 1) q +r times the suspension isomor- 
phism IJ* used in [16]. 
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Let p : S’ A (X/A) A (Y/B) -+ S’ A ((X/A) A (Y/B)), 
p’ : s1 A (X/A) A (Y/B) -+ (s’ A (X/A)) A (Y/B), 

p” : s’ A (X/A) A (Y/B) + (X/A) A (s’ A (Y/i?)) 

be the natural homotopy equivalences used in [16; (2.4)], where (Y, B) is also a finite 
CWpair. Then the compositions 

ciL=p’*-lop*oC1: K”((X/A) A ( Y/B)) -+1?r + ‘(f&i&d) A (Y/B)), 

uR = p”*- 1 o p* o a : i?((X/A) A (Y/B)) -+I?‘+‘((X/A) A s( Y/B)) 

are isomorphisms. 

The cohomology theory K* has a product (cf. [5; $1.51) 

(2.11) A :KP(X,A)@KP(Y,B)+KP+4(X~ Y,A x YuXxB). 

This product is associative and anti-commutative. Moreover there exists an element 
1 E K’(x,) = R”(So) which serves as the unit in the product (2.11). 

The following lemma can be easily verified along the lines of [5; $1.51. 

LEMMA (2.12). Let x E @‘(X/A) and y E Eq( Y/B). Then the following identities hold. 

In particular, we have 

B(X) A Y = (- l)‘%(X A y), 
X A u(Y) = Q(X A Y), 

P(X) A Y = P(X A Y), 
X A P(Y) = & A Y). 

a(l) A y = (- l)‘@(y), 
X A Cc(l) = M(X), 

P(1) A Y = P(Y), 
X A 8(l) = P(X). 

Remark. Strictly speaking, the Bott isomorphism (2.9) may differ from the one given 
in [5]. The Bott isomorphism in [5] is the multiplication by cl-‘(g) where g is a prescribed 
generator oflf’(S*) z 2, while a*/?(l) = +g. If one wants to make a”P(1) = g, one has only 
to replace, if necessary, the homotopy equivalence h, : Z x BU + RU by - h2. 

We now generalize the homology and cohomology theory to the category of arbitrary 
CWcomplexes. Let (X, A) be a CW-pair. The q-th homology group H,(X, A; E) of (X, A) 
with coefficients in the spectrum E is defined by (2.1). It is easy to see that 

(2.13) H,(X, A; E) = lipid H,(X,; X, n A; E) 

where X, ranges over all finite subcomplexes of X. From (2.13) or directly as in [16] it 
follows that this actually defines a homology theory satisfying the first six axioms of 
Eilenberg-Steenrod. The induced homomorphism f* and the suspension isomorphism U* 
are defined as in 1161. 

As for the cohomology, the generalization will be limited on the cohomology theory 
based on the unitary spectrum. The q-th cohomology group is defined by (2.7). It is easy to 
verify that this defines a cohomology theory satisfying the axioms of Eilenberg-Steenrod 
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except the dimension axiom. The suspension isomorphism U* is defined by (r* = (- l)q+‘oz, 

where Q is given by (2.10). The Bott isomorphisms (2.8) and (2.9) are also valid in this 

extended sense. 

Moreover, from the expression (2.7) it follows that this cohomology theory is additive 

in the sense of Milnor [12]. That is, if Xis the disjoint union of CW-complexes X,, then the 

cohomology group Kq(X) is canonically isomorphic to the direct product II,Kq(X,). As a 

special case of a theorem of Milnor on general additive cohomology theory [12] we get 

LEMMA (2.14). Let X be a CW-complex. Suppose that there is a sequence offinite sub- 

complexes XI c X, c + + - with union X. Then the natural homomorphism 

F(X) --t +l&l K”(X,) 

n 

is onto. The kernel vanishes whenever the natural homomorphisms Kq-‘(X,,,) + Kq-‘(X,) 

are onto for all n. 

A CW-complex X will be called K*-admissible if it satisfies the following condition: 

(2.15) The natural homomorphism 

K*(X) ---* +l& K*(X,) 

is bijective. Here the inverse limit is taken over all jnite subcomplexes of X. 

It is clear that if there is a sequence X1 c X, c * * * of finite subcomplexes with union X 

such that K*(X) + & K*(X,J is a bijection then X is K*-admissible. 

” 

LEMMA (2.16). (i) Let X be a CW-complex. If there is a sequence XI c X, c * - - of 

jinite subcomplexes with union X such that H*(X,,; Z) are free abelian groups for all n and the 

natural homomorphisms H*(X,,+ 1 ; Z) -+ H*(X,; Z) are surjective for all n, then the CW- 

complex X is K*-admissible. 

(ii) Let X and Y be countable CW-complexes. Suppose that both complexes X and Y 

satisfy the condition of (i). Then the product X x Y and the reduced join X A Y are K*- 

admissible C W-complexes. 

Proof. (i). The sequence 

0 -, H*(X,+,, X,,;z)+H*(X,+,; Z)+H*(X,,;Z)-+O 

is exact and the group H*(X,+ 1, X,,; Z) is without torsion by virtue of the assumption. It 

follows that K*(X,+l, X,) is a free abelian group and ch : Kq(X,+,, X,) -+ H*(X,+I, X,; Q) 

is an injective homomorphism (cf. [5]). Consider the commutative diagram 

KQ(X,+ 13 -a A K4(X,+ 1) 

I 
ch 

I 
ch 

O--,H*(X,+,,X,;Q)i;H*(X,+,;Q) 

where the bottom row is exact. Since j* 0 ch is injective. j* : Kq(X,+,, X,) -+ K4(X,+,) is 

injective. Then the exactness of the cohomology sequence for K*-theory implies the sur- 
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jectivity of P-‘(X,,,) + Kg-‘(X,). Therefore Lemma (2.14) applies and the group Kq(X) 
is canonically isomorphic to lim Kq(X,). Thus X is K*-admissible. c- n 

(ii). Let X1 c X, c * * * be a sequence of finite subcomplexes of X with union X and 
let Yr c Y, c ... be a sequence of finite subcomplexes of Y with union Y. If H*(X,; 2) 
and H*( Y,; Z) are both free abelian groups and if H*(X,,+,; Z) -+ H*(X,; Z) and 

H*(Y,+r; Z) + H*( Y,,; Z) are both surjective, then the Kiinneth formula implies that 

H*(X”+, x Y,+,; Z) -+H*(X,, x Y,;Z) and H*(X,,+, A Y,+,;Z)+H*(X, A Y.; Z) are 
surjective homomorphisms and the groups considered are all free abelian. Since we have 
assumed the countability of the CW-complexes X and Y, the product X x Y and the 
reduced join X A Y are CW-complexes. Moreover X1 x Y,, X, x Yz, * * - is a sequence of 
finite subcomplexes with union X x Y. Similarly, X1 A Y,, X, A Y,, * + + is a sequence 
of finite subcomplexes with union X A Y. It follows from (i) that X x Y and X A Y are 
K*-admissible. This completes the proof. 

LEMMA (2.17). The C W-complexes Up, Up A U, Up A U, A U,, sp A U,, Up A sq, 

(Sp A U,) A U, and Up A (S4 A U,) are all F-admissible. 

Proof. First consider the infinite unitary group U = IJ, U(n). It is classical that 
H*(U(n); Z) is free abelian and that H*(U(n + 1); Z) -+ H*(U(n); Z) is surjective. Hence 
the C W-complex U is K*-admissible by (2.16). As a classifying space BU we may take the 
limit space lJ G,,” where G,,, = U(2n)/U(n) x U(n) is the complex Grassman manifold. It 
is also classical that the sequence Gr,, c G2,2 c . . * satisfies the condition of (i) in (2.16). 
Hence BU is K*-admissible. Therefore Z x BU is also K*-admissible. Then the complex 
Up A U, is K*-admissible by (2.16) (ii). The remaining cases are treated similarly. This 
completes the proof. 

Now we shall prescribe a specific element in i? ““(U,, A U,) = [Up A U,, Up+,,]. Let 
XpOi be a finite subcomplex of Up. We denote by rp E r?“(U,> = [Up, Up] the element repre- 
sented by the identity map Up --+ Up. The restriction of lp on the subcomplex Xp,i is denoted 
by rp,i E RP(Xp,i). Consider the element 

(lp,i * Ip,j) E II K’+‘(xp,~ A Xq,j>, 
Li 

where Xp,i and X,,j range over all finite subcomplexes of Up and U, respectively. By the 
naturality of the product (2.11) the above element belongs to the inverse limit group 
lim$?‘+4(Xp, A X,,j). Since the finite complexes Xp,i A X,,j have the whole Up A U, as 
‘i,i 
their union and since Up A U, is K*-admissible, we have a canonical isomorphism 

I?p+q(up A u,) E lim I?p+g(Xp,i A X,,j). 
t7 1.1 

Let lp A lq denote the element corresponding to (z,,: A I~,~) by this isomorphism. This 

element zp A lq is the unique one which gives lp,i A zq,j when restricted on Xp,i A Xg,j. 

We will define the element t,,, E [Up A U,, Up+,J by 

t p,4 = (- l)pglp A Iq. 
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We often use the same notation t,,, to mean a map Up A Uq + Up,, representing the 

homotopy class t,,,. 

PROPOSITION (2.18). The homotopy classes t,,, satisfy the following relations. 

%.(t,,,) = +; A W,,l,,~ 

%dt,,,) = (-- l)Y1 * g?t,,,+ 1’ 

Proof. Recall that txL is an isomorphism 

i?P’“(U, A u,, = [Up A u,, Up+,] + [SU, A u,, Up,,+,] = I?P+q+‘(sup A Uq). 

Note also that the element zp E [U,, U,] = @‘(Up) is mapped by the isomorphism 

tl :@‘(U) -I?p’l(SU,) = [SU,, U,,,] to the homotopy class represented by the map P 

up : sup -+ up,,. In other words, we have 

(2.19) ,(I,) = up*(Ip+ I). 

Take finite subcomplexes Xp,i c Up and Xq,j c U,. Applying Lemma (2.12) to the element 

‘p-i * Iq,j E RPfq(Xp,i A Xq,]), we have 

cLL(Ip i A Iq 9 9 = (-l)qc((zp,i) A Iq,j> 

where cl(zp,J E K -p+‘(SX .) P.L . Since the union of the subcomplexes SX, i A Xq,j c SUP A U, 

is SUP A U, and the CW-complex SUP A U, is K*-admissible, we may pass to the inverse 

limit to get the relation 

EL($, A zq) = (- l)q@&J A rq, 

= (- l)qu;(z,+ 1) A zq. 

The first relation in (2.18) follows easily from this. The second relation is proved similarly. 

Remark. Proposition (2.18) just means that the double sequence of maps tp,q : Up A U4 

--) UP+, 
defines a pairing (U, U) + U in the sense of G. W. Whitehead [16]. It can be proved 

that this pairing is associative and anti-commutative. The associativity means here that the 

two maps Up A U, A U, -+ Up+q+r defined by (x, y, z> + tp+q,,(tp,q(x, Y), z) and (x, y,z) + 

t p,q+r(x> tq,*(Y> z)) are homotopic, base points being preserved. The anti-commutativity 

means that the map Up A U, + Up.+, defined by (x, y) + t,,,(y, x) represents (- l)pq times 

the element t,,, E [Up A U,, Up+,]. These facts come from the associativity and anti- 

commutativity of the product (2.11) which supply the desired homotopies on finite sub- 

complexes. We may pass to the inverse limit in virtue of (2.17) as in the proof of (2.18). 

According to a general procedure due to G. W. Whitehead [16], the above pairing 

defines several kinds of products in the homology theory K* and the cohomology theory K*. 

Generalizations to the category of not necessarily finite C W-complexes are easy, except that 

one must deal carefully with the Cartesian product. However, the last point does not matter 

when one deals only with countable CW-complexes. 

We use the cohomology cross-product 

A : RP(;Y) o@(Y) +Rp+q(X A Y), 

the /-product 
/ : RP+q(X A Y) @I?,(Y) +RP(X), 



266 AK10 HATTORI 

and the Kronecker index 

( 3 ) : I?,(x) cNP(X) -+I?,-,(P), 

where X and Y are countable CW-complexes with base point. 

It is easily seen that the cohomology cross-product coincides with the product (2.11) 

when the CW-complexes X and Y are both finite, and that the commutation laws (2.12) 

hold even in the extended sense. Commutation laws between the other kinds of products 

and the isomorphisms CI, /I are obtained. In particular, the Bott isomorphisms p are com- 

patible with all the products. For example we have the relations 

(2.20) (B(x)t u> = (x9 P(u)> = B(x, u> 

for x E R,(X) and u E Kq(X). 

We shall identify K&S”) =R-2m(s0) with the integer group Z as follows. First 

R,(,S’) = I?‘(S’) is identified with Z by corresponding the unit element 1 to the integer 1. 

Then R,,(s’) is identified through iterations of /I. Of course i?,,,,+,(s’) = R-Zm+l (So) = 0 

by the Bott periodicity. 

Under the above convention the Kronecker index becomes a homomorphism 

( 9 > : R,(X) @i?(X) + z, 
and (2.20) becomes 

(2.20)’ <P(x), u> = <A P(u)> = <x, u>. 

LEMMA (2.21). (i). Zfu E RP(X), v E Rq( Y) and y E I?,(Y), then 

(u A 4/Y = (- l)q<Y, v>u. 

(ii). Ifu’ E I?p-‘(X), v’ E Rq+i ( Y) and y E R,(Y), then (u’ A v’)/y = 0. 

This Lemma can be easily proved through examination of the definitions of products, 

taking account of the associativity and the anti-commutativity of the pairing (U, U) + U. 

The details are omitted. 

Next we shall specify a generator gr of rc,(U,) = [9, U,] =&s’). We put go = 

1 E K”(,So) and define inductively g1 by 

9, = c&J,- 1). 
It is to be noted that 

(2.22) 91 = %*Q,-1). 

We shall also write g1 to denote a map S’ + U, representing the element g1 E rc,(U,). 

Following G. W. Whitehead [16] we define the sphere spectrum S = {S”, EJ by taking 

&,: ss”+s”+’ to be the identity map. Then (2.22) just means that 

(2.23) the sequence of maps g,. : S’ -+ U, defines a map of spectra g : S -+ U in the sense of [ 161. 

The q-th homology group H,(X, A ; S) of a CW-pair (X, A) with coefficients in the 

sphere spectrum S is nothing but the q-th stable homotopy group $(X/A). The map of 

spectra g induces a natural transformation 

H: H,( , ; S) + H,( , ; U) = K,( , ). 
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Specifically, if X is a CW-complex with a base point and if x E n;(X) is represented by a 

map f: Sq+” -+ S” A X, then H(x) E g,(X) is represented by the map (g. A 1) Of: Sq+” -P 

u, A x. 

The map of spectra g also induces a natural transformation 

H:F( , ;S)-+W( ) ;u)=P( , ). 

Here we work in the category ofjinite C W-complexes. If X is a finite C W-complex with a 

base point and if u E Rq(X; S) is represented by a map f: S”-qX-+ S”, then H(u) E Kg(X) is 

represented by the map gn Of: S”-qX -+ U,,. 

LEMMA (2.24). Under the usual identtjication Sp+q = Sp A Sq, we have the relation 

gp+q = (- l>““s, A Qq 

in Ep +“(Sp +‘). 

ProoJ Apply CI~ to the identity gr = 1 A g,.. Noting that c(~ = CI in Z?(S’ A S’) = 

E’(Y) we get from Lemma (2.12) 

@,) = (- l)‘@) A 9r, 

that is, 

gi+p = (- 1)‘91 A 91. 

This proves the case p = 1. The general case follows by induction from this and the associa- 

tivity of the cross-product. 

LEMMA (2.25). The following diagram is homotopy commutative 

SPAUq gphldpAUqilhgq upAs 

‘1 
/ 

“P.9 
\ 

I 

// 
fPW / n,?J,rl 

‘\ up,, 

where the map np,q is the composition 

Sp ,, u, -‘~-~‘4 S”-’ A uq+l sp_2u4+& . . . -_) S~p+q_I supcq-L, Upfq, 

and the homotopy class of nj,q is represented, after being multiplied by (- l)Pq, by the map 

(x, y) -+ n,,,(y, x). 

Prooj: The homotopy commutativity of the second triangle follows from that of the 

first and the anti-commutativity of the pairing t,,, : Up A Uq 3 Up+,. 

To prove the homotopy commutativity of the first, we proceed by induction on p. 

By the definition of the cohomology cross-product, the map t,,, o (gp A zq) represents 

(-l)pqgp A zq E K “P+q S’ A U) = [Sp A U,, Up+,]. We denote by the same letter np,q the ( 
homotopy class represented gy the map. Then the desired homotopy commutativity means 

the relation 

np,q = (- I)pqgp A Zq. 
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(-l)‘g, A 1, =(-l)'@(l) A 1, 
= ~~(1 A I~), by (2.12) 

= a(1,) 
= R:(r,+ I), by (2.19, 
= n, I. 

This proves the case p = 1. Suppose inductively that the above relation holds for all q. 

Under the natural identification Sp+’ A U,_, = Sp A (S’ A U,-,), we have 

$+1,q-1 = (1 A ~,-I)*(~,.,). 

The inductive assumption yields then 

‘rp+~,q-~ = (-L)p4gp A &(l,) 

= (- 1)p4gp A a(+ r), by (2.19), 

= (- L)“g, A ((-l)q-lgl A I~-~), (case: p = l), 

= (-L)pq+q-l(gp A gI) A Zq-l 

= (-1) (p+l)(q-l)gp+l A I~_~, by (2.24). 

This completes the induction. 

The double sequence of maps np,4 : Sp A U, -+ Up+, forms a pairing (S, U) --) U and 
hence induces several products (cf. [ 161). Among these we need the /-product 

/ : fiP+‘(X A Y; S) @R,(Y) -R’(X) 

and the Kronecker index 

( ) ) : B,(X; S) Or?“(X) ‘Rp_,(SO). 

Here X and Y are C W-complexes with base point which are assumed finite in the case of 
/-product. As before we shall regard the Kronecker index as a homomorphism 

( 2 ) : iTf,(X; S) 0 f‘?(X) --) 2. 

As a direct consequence of Lemma (2.25) we have 

LEMMA (2.26). The following two diagrams are commutative. 

BP+‘@ A Y; S) @ I?,(Y) i, r?‘(X) 

I 
HE31 

I 

iP+yx A Y) 0 R,(Y) i, P(X), 

ti,(X;S)@P(X) < ’ )bZ 

I 
H&21 

I 

I?,(x)@11yx) ( ’ )+z. 

For later use we deduce some consequences from Lemma (2.26). We denote by 
sP E Bp(Sp, S) = n$(SP> the element represented by the identity map Sp -+ 9. We also 
denote by sf E fip(Sp; S) the element represented by the identity map. 
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LEMMA (2.27). Let X be a CW-complex with base point and let f: Sp + X be a base 

point preserving map. Let x E k,(X, S) = n;(X) be represented byjI Then, for any v E Kg(X), 

(H(x), v> = (s,,f *v>. 

In fact, 

<H(x), v> = (x, u>, by (2.26) 

= (f*(s,)> v> 

= <s,,f *v>. 

PROPOSITION (2.28). Let X and Y be jinite CW-complexes with base point, and let 

u : Y A X+ S” be a duality map in the sense of [14]. Then the homomorphism 

u*g,/ : E,(X) -+ Rn-p( Y) 

is an isomorphism, where gn E I?‘(F) is the generator prescribed before. 

In fact, by [16; (8.2)], we know that the homomorphism 

u*s,/ : R,(X) --f P-y Y) 

is bijective. Now H(s,) = g,,, so that the homomorphism u*g,/ coincides with u*s,/ by (2.26). 

We come now to the duality theorem. Let X be a CW-complex with base point. The 

Kronecker index 

< T > : I?,(X) 0 P(X) + 2 

induces a homomorphism 

y : Rq(X) --f Hom(R,(X), Z) 

defined by 

Y(V) = ( > 0). 

THEOREM (2.29). Let X be a $nite CW-complex with base point. Suppose that the 

cohomology K*(X) is torsion free. Then the homomorphism 

y : Kg(X) + Hom($(X), Z) 

is a bijection. 

Proof Let A be a finite CW-complex with base point. We shall write R,(A) for the 

group R,(A) factored by its torsion subgroup. Similarly we set Kg(A) = I?q(A)/torsion. 

The cohomology cross-product, the /-product, and the Kronecker index induce naturally 

homomorphisms 

A :Rp(x)@P(Y)+Rp+~(xA Y) 

/ : lP+yx A Y) @ Kq( Y) 4 P(X), 

< 3 ) : K,(x) 0 P(X) -+ z. 

The formulas in Lemma (2.21) hold also in this sense. 

To prove the theorem we may assume q = 0 or q = 1 in virtue of (2.20)‘. 

Let Y be a 2n-dual of Xand let u : Y A X-t S”’ be a duality map. The homomorphism 

u *92./ : R,(X) - Rz”-yY) 
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is a bijection by (2.28). From the naturality of the Bott isomorphism with respect to the 

product it follows that the homomorphism 

u*g;,/: R,(X) --* P(Y) 

is also a bijection where g;, E g”(S2”) is a generator. Hence the homomorphism 

w/ : Kq(X) + R-y Y) 

is a bijection where w denotes the image of u*ghn E I?‘( Y A X) in I?‘( Y A X). 

Now, since K*(X) is torsion free, it follows from the Ktinneth formula for K-theory 

due to Atiyah [2] that the cross-product gives a direct sum representation 

P(Y AX) rP(Y)&P(X) +I?-‘(Y)C#(X). 

This leads to a natural isomorphism 

RO(YAX)rRO(Y)ORO(X)+R-‘(r)OR’(x). 

Let {ai}, (bi}, {Ci> and {di} be free bases of K”( Y), R-‘(Y), R’(X) and R’(X) respec- 

tively. Let w E R”(Y A X) correspond to 

C mija 0 cj + 1 n,,& 0 4 

by the above isomorphism. Then, for any x E %(X), 

w/x = C m,j(X, Cj)Ui, if 4 = 0, 

-c Mx, 4Mk, if q = 1, 

by (2.21). Let {e,} be a base of R,(X). Then the matrix corresponding to the isomorphism 

w/ with respect to these bases is 

(mij) * ‘(<es, cj>>, if 4 = 0 

-h) * ‘((es, 4)), if q = 1. 

This matrix has determinant + 1 since w/ is an isomorphism. 

Two conclusions follow from this. First, 

rank R’(Y) S rank R’(X), 

rank R-‘(Y) 5 rank R’(X). 

Since X and Y are 2n-dual to each other the roles of X and 

have the equalities 

rank I?‘(Y) = rank I?‘(X), 

rank R-‘(Y) = rank R’(X). 

Y are reciprocal, and we must 

Second, since the matrices (mij), ((e,, Cj)) etc. are square matrices as remarked just 

above, the determinants of these matrices must be _t 1. 

On the other hand the matrix corresponding to the homomorphism 

y : Kq(X) = Rq(X) -4 Hom(l?,(X), Z) 

with respect to suitable bases is 

((e,, cj>)9 if 4 = 0, 

(<es, d,)), if q = 1. 
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Since this matrix is integral and has determinant + 1, y is an isomorphism. This completes 

the proof. 

COROLLARY (2.30). Let X be a CW-complex with base point. Suppose that there is a 

sequence Xl c X, c - .. of finite subcomplexes with union X such that K*(X,) is torsion 

free for all n. Suppose moreover that X is K*-admissible. Then the homomorphism 

y : PyX) -+ Hom(R,(X), Z) 
is a bijection. 

Proof. By the assumption and Theorem (2.29), 

y : Rq(Xn) E Hom(R,(X,); Z) 

for all n. It is easy to see that this induces a natural isomorphism 

y : lim Kq(X,) z Hom(b R,(X,), Z). 
n n 

Since the union of the subcomplexes X, is X, 

b R,(X,) = R,(X) 
n 

by (2.13). Also since X is K*-admissible by assumption, 

lim @(X,) = P(X). 
n 

This completes the proof. 

Finally we consider the K,-homology of the Thorn complex of a complex 
vector bundle. Let X be a connected CW-complex and let r be a complex vector 
bundle over X of complex dimension q. Let X5 denote the Thorn complex of r. Let x be 
any point of X. Then the inclusion map i : S 2q = x5 -+ X5 represents a generator 
s E i&(X$ S) = rc;,(Xq E z. 

LEMMA (2.31). With the above notation, the element H(s) E l?,,(Xc) is not divisible by 

any integer other than f 1. 

Proof: Let X, be a connected finite subcomplex of X. The inclusion Xi c X5 induces 
a natural isomorphism A,,(Xi; S) z fi,,(Xc; S). We regard s as an element of fl,,(Xi; S). 

Now, it is known that there exists an element v E RZq(Xi) such that i*v = gzq E RZq(S2q) 

(see for example [6]). Hence 

<%q, i*v) = +l. 
Since i,s,, = s, Lemma (2.27) yields 

(H(s), v) = f 1. 

This implies that H(s) EI?,,(X,~) is not divisible by any integer # t 1. Since i?,,(X<) 
= l& i?*,(Xi), the naturality of H implies that H(s) E R,,(X<) must not be divisible by any 

inteier # &- 1. 

Remark. If we assume moreover that the group Rzq(X5) is finitely generated or free 
abelian, then Lemma (2.31) says that the homomorphism 

H : &,(X’;; S) -+ &,(Xs) 

is a bijection onto a direct summand. 
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93. PROOF OF THEOREM II 

Let BU(N) be a classifying space for the unitary group U(N) and let MU(N) be the 
Thorn complex of the universal complex vector bundle tN over BU(N). We may assume 
that BU(N) is a countable CW-complex so that MU(N) is also a countable CW-complex. 

LEMMA (3.1). The homomorphism 

y : lP(MU(N)) -+ Hom(R,(MU(N)), Z) 

is a bijection. The group K&MU(N)) is a free abelian group. 

Proof. We may take the limit space IJ Gn,N as a classifying space BU(N), where 

G n.N = u(n + N)/O(n) x U(N) is the complex” Grassman manifold. M(/(n, N) will denote 
the Thorn complex of the universal bundle & restricted on the subcomplex Gn,N. Then 
MU(1, N) c MU(2, N) c * . . is a sequence of subcomplexes with union MU(N). 

H*(G,,N; Z) is free abelian and the natural homomorphism H*(G,+l,N; Z) -+ H*(G,,N; Z) 

is surjective. Using the Thorn isomorphism, we see that H*(MU(n, N); Z) is free abelian 
and the natural homomorphism H*(MU(n + 1, N); Z) -+ H*(MU(n, N); Z) is surjective. 
Hence the group K*(MU(n, N)) is also free abelian. In particular the CFV-complex MU(N) 
is K*-admissible by Lemma (2.16) and we can apply Corollary (2.30) to conclude that 

y : R4(MCJ(N)) + Hom(l?,(MU(N)), Z) 

is bijective. 

To prove the second statement we may proceed directly using the spectral sequence 
connecting H,(MU(N); K,(Q)) to K,(MU(N)) (cf. [IO]). However we argue here as fol- 
lows. Using the spectral sequence we see that &MV(n, N)) is a free abelian group of 
finite rank. Let i : MU(n, N) -+ MU(n + 1, N) denote the inclusion. Then the commutativ- 
ity of the diagram 

P(MU(n + 1, N)) -5 Hom(R,(MU(n + 1, IV)), Z) 

1 
i* 

1 
i* =Hom(i,. 

I?g(MU(n, N)) Y. Hom(l?,(MU(n, N)), Z), 

together with the surjectivity of i* implies that the homomorphism 

i, : I?,(MU(n, N)) + R,(MU(n + 1, N)) 

is a bijection onto a direct summand. Therefore the direct limit l%&(MU(n, N)) = 
n 

I?,(MU(N)) is a free abelian group. 

Now suppose k < N. Then the homotopy group x~~+ZN(MU(N)) is stable, that is, 

~k+z#fVN))= 71Szk+2N(MU(N))=H?k+Z~(MU(PJ),S). 

THEOREM (3.2). Suppose k c N. Then the homomorphism 

H:n ~~+zN(MU(N))~RZ~+ZN(MU(N)) 

is II bijection onto a direct summand. 
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Assuming (3.2) for a moment we shall prove Theorem II. First as a corollary of (3.2), 

we get 

COROLLARY (3.3). Suppose k < N. Then the homomorphism 

I?2k+2N(MU(N)) LHom(R 2k+2N(M”(Nh 2) 2 ~om(~,k+,N(~~(Nh z> 

is surjective, where H# = Hom(H, ) = O H is the composition by H from the right. 

Indeed, y is a bijection by (3.1) and H* is surjective since His a bijection onto a direct 
summand by (3.2). Therefore H* oy is surjective. 

Now Theorem II is proved as follows. Let x E nzk+2N(Mu(N)) and v E i?2k ‘2N(MU(N)). 
Then, 

(H#o V(~)(X) = (H(x), u>, 
= +2k+2Ny X*(V)>, bY (2.27). 

Therefore, if we define the homomorphism 

p : 1?2k+2N(MU(N)) -+ Hom(n,,+,,(MU(N)), l?2k’2N(S2k’2N)) 

by 

p(v)(x) = x*(v), 

then we get 

(H#oy(4)(4 = +2k+2N, P(V)(X)>. 

Since H#Oy is surjective by (3.3) and since the Kronecker index n2k+2N(S2k+2N) @ 
KZk+ZN(sZk+ZN) _*z is a dual pairing, this relation implies that the homomorphism p is 
surjective. From the naturality of the Bott isomorphism it follows that the homomorphism 

p : K’(Mu(N)) + H0??‘2(7C,,+,,(hf~(N)), K”(SZk +2N)) 

defined by the same formula as above is also surjective. This completes the proof of 
Theorem II. 

The rest of this section is devoted to the proof of Theorem (3.2). 

We consider the double sequence of groups 

%(k+N+l+m)(U21 * MU(N + m)), UzI = Z x BU, 

indexed by pairs of integers (I, m) with 0 5 I, 0 5 m. 

Let 

4 I,mi~2(k+N+l+m)(U21 h MU(N + m))+ n2(k+N+l+l+m)(U2(1+1) A MU(N f m)> 

be the composition homomorphism u2,+ r* 0 S 0 uzI* 0 S. 

There is a map (unique up to homotopy) f: BU(N + m) -+ BU(N + m + 1) such that 

*GV+m+1 = 5ii+m 0 1, where 1 is the trivial complex line bundle. The Thorn complex of 
CM+,,, 0 1 is naturally homeomorphic to the double suspension S2MU(N + m). The bundle 
map 5N+m 0 1 --t 5N+m+l induces a map 

b, : S’MU(N + m) + MU(N + m + 1). 
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Let $l,m be the composition homomorphism 

%(kfNfIfm)(UZI A MU(N + m)) -5 %(k+N+I+m+&Jzl A SZMU(N + m)) 

* Jr2(k+N+I+,n+1)(UZI A MU(N + m + 1)). 

Then it is easily seen that 

(3.4) * I+ 1.m o 4l,m = +l,m+ 1 o $1,~ 

(3.4) implies that the double sequence of groups rr2(k+N+r+mj(Uz~ A MU(N+ m)) 
together with homomorphisms &,,m, $r,,, ( and their possible compositions) forms a direct 
system. From the definition we see immediately that 

(3.5) the partial direct limitI+ T~~(~+~+,+,,,)(U~, A MU(N + m)) is nothing but the homology 

W’uP ~2(k+N+mj(M~(N + m)). 

Let 6,(X) denote the reduced homology group of a CW-complex X having base point 
with coefficients in the spectrum 

MU = {MU(O), SMU(O), MU(l), SMU(l), * . .> (cf. [9]). 

Then it is also immediate that 

(3.6) the partial direct limit lim n2(k+N+r+m)(U21 A MU(N + m)) is the homology group 
- m 

%(t+l)(Z x w* 

The groups lim ~2(k+N+l+,,,)(U21 A MU(N + m)) = l?2Ck+N+,,,,(MU(N + m)) form a 
_;;;, 

direct system in a natural way. Also the groups lim TC~(~+~+~+,,,)(U~, A MU(N + m)) 
Y? .-. 

= ezCk+ ,(Z x BU) form a direct system, and we have 

(3.7) lim n2(k+N+l+m)(U21 A MU(N + m)) = lk~ 1?2Ck+N+mj(MU(N + m)), 
m.1 m 

= b &2Ck+lj(Z x BU). 
I 

We shall denote the total direct limit (3.7) by R,,(MU). 

At this point we turn to the multiplicative property of the complex bordism homology 

theory (cf. [9]). There is a map (unique up to homotopy) 

f:BU@) x BU(q)+BU(E,+q) 

such thatf *&,+g = 5, x 5,. The Thorn complex of the vector bundle 5, x 5, being naturally 
homeomorphic to the reduced join MU(p) A MU(q), the bundle map rP x & + CP+,, 
induces a map 

b P,4 : MU(p) A MWd -+ MU(I, + 4. 

The maps b,,, g ive rise to a pairing (Mu, MU) --+ MU. This pairing in turn gives rise to 
products in the homoIogy and cohomology. In particular we have the homology cross- 

product 

&(;Y) 8 qs”) -+ 4’,+,(x). 
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We simply write xy to denote the cross-product of x E e,(X) and y E &&So). Iff: Sp”’ 
+ X A MU(s) represents x E @JX) and if h : Sg+2’ -+ MU(t) represents y E &&So), then 

their cross-product xy E “Z,+,(X) is represented by the composition 

Sp+n+2(s+A = Sp+” A Sg+2’ ‘Ah > (x A MU(S)) A MU(t) --t x A (MU(s) A MU(t)) 

1”bs’f) x A hfU(S + t), 

where the second map is a natural homotopy equivalence [16; (2.4)J. 

Taking X = So, the group u%/* = c, eP, eu, = %,(S’), becomes a commutative, asso- 
ciative graded ring with unit 1. This is nothing but Milnor’s complex cobordism ring. 

Moreover the cross-product makes the homology group 4*(X) = cP&!,(X) a graded (right) 
&,-module. 

Now we see that 
(3.8) the natural homomorphism 4?!2qk+lj(Z x BU) --t azck+ I + ,,(Z x BU) is a %,-module map. 

The verification of (3.8) is immediate. It reduces to the compatibility of the cross- 
product with induced homomorphisms and the suspension isomorphism. 

Let go : So + Z x BU represent 1 E R”(So). Then, analogously to (3.8) we see that 
(3.9) the natural homomorphism go* : gZk(So) -+ ozzk(Z x BU) is a %*-module map. 

Suppose now k < N and consider the homomorphism 

H:n 2~+2~@4WO -+ ~,,+,,WWO)~ 

or more generally 

HI71 2k+2cN+m#fU(N + m)) -, R2k+2c~+m#4U(N f 4). 

Since the homotopy group z2k+ 2CN+mJ (MU(N + m)) is stable the homomorphism H is 

simply the composition 

712,+2CN+mj(MU(N + m)) 80*, 712k+2CN+mj((Z x BU) A MV’ + m)) 

- K2k+2CN+,j(MU(N + m)) 

where the second homomorphism is the natural map to the direct limit group. 

On the other hand the direct system 

. ..-‘~c~~+~(~+.)(MU(N+~))-~~~~+~(~+~+~)(MU(N+~ + l))-.** 

is stable, that is, we have a canonical isomorphism 

~c~~+~(~+,#~U(N + m)P *D. 

Therefore the homomorphism H can be interpreted as a homomorphism H: Q,, + 

K2k+2cN+mJ(MU(N + m)), and we have the following commutative diagram: 

(3.10) 



276 AKIO HATTORI 

We now quote a theorem of Milnor on the structure of cobordism ring %* (cf. [13, 151). 

THEOREM OF MILNOR (3.11). The ring %* is a polynomial ring over Z with generators 

M,, E e2q. 

Furthermore, according to Conner-Floyd [S, 91, we have 

PROPOSITION (3.12). &*(Z x BU) is a free graded %‘,-module. 

Let H, denote the composition 

&z/l -% &(Z x BU) - %(~+I)(Z x BU), 

and let H, denote the composition 

H, is a %,-module map by (3.8) and (3.9). 

For the proof of Theorem (3.2) it suffices to show the following proposition. 
(3.13) Let x E 9’~~~ be an element not divisible by any integer other than + 1. Then H,(x) E 

& Zck+lj(Z x BU) is not divisible by any integer other than +_ 1 for any 1. 

In fact, if (3.13) holds, then passing to the direct limit z,,(MU), H,(x) is not divisible 
by any integer # + 1. It follows from the commutativity of the diagram (3.10) that 

H(x) E &+ 2N(MU(N)) is not divisible by any integer # + 1. Since azk is a free abelian 
group of finite rank by (3.11) and since R 2k+ZN(MU(H)) iS a free abelian group by (3.1), 
this implies clearly that the homomorphism H : ‘Bzk + R2k+2N(MU(N)) is a bijection onto 
a direct summand. This proves (3.2). 

We now proceed to prove (3.13). First, the case k = 0. %,, is generated by 1. By the 
isomorphism %a E nzk+2(N+m) (MU(N + m)), the element 1 corresponds to s. By Lemma 
(2.31), H(s) E .? Zk+ZcN+,j(MU(N + m)) is not divisible by any integer other than + 1. Since 
this is true for any m, the image H,( 1) of H(s) in the direct limit K:,,(MU(N)) is not divisible 
by any integer # + 1; a fortiori H,(l) is not divisible by any integer # &- 1. 

Let {al} be a homogeneous %! -base of &(Z x BU) (cf. (3.12)). If I is fixed, then we can 
write uniquely H,(l) E &,,(Z x BU) as a finite sum 

H,(l) = C a&, xi E a*. 

If d is an integer dividing Xi for all i, then d must be equal to + 1, as proved just above. 

Take any k and let x E +Yzk be an element not divisible by any integer # + 1. Since 
HI is a %!,-module map, we have 

H,(X) = H,(l) ’ X = C QiXiX. 

Suppose that an integer d divides xix for a fixed i. Then, since qII is a polynomial ring over 
Z, d must divide xi. Now if d is an integer dividing H,(x) then d divides xjx for all i. Thus 
d divides xi for all i. Hence d = + 1. This proves (3.13) and completes the proof of Theorem 
(3.2). 
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$4. DEDUCTION OF THEOREM I 

Let I E [BU, BU] denote the element represented by the identity map, where [ , ] 

means the set of base point preserving homotopy classes as before. Note that 

[BU, BU] = [BU, Z x BU] = E?-‘(BU). 

Set 0 = --1 E [BU, BU]. We write 8 also to denote a map BU -+ BU representing the homo- 
topy class 8. Let X be a connected finite CM’-complex with base point. Then 

[X, BU] = [X, 2 x BU] = l?‘(X): 

Let x E [X, BU] = f?‘(X). The it is clear that 

(4.1) eox= -X&O(X). 

(4.1) says that, for a stable complex vector bundle x over X, 8 O x is its inverse stable bundle. 

Now, since the CW-complex BU is K*-admissible, an argument similar to the proof of 
Proposition (2.18) using (4.1) proves the following equality : 

(4.2) e 0 e = I E [BU, BU]. 

From (4.2) it follows that 

(4.3) 3* : 

o* : 

K’(BU) -+ K’(BU) is an invofutive ring auto- 
morphism, 

H**(BU) -+ H**(BU) is an involutive ring auto- 
morphism for any coeficient 
group. 

Let c, denote the n-th Chern class of the universal U-bundle over BU. Then (4.1) and 
the product formula for Whitney sum yield 

(4.4) (1 f c1 + c2 + . . *)(l + e*(ci) + e*(cJ + . . .) = 1. 

Since the cohomology ring H**(BU; 2) is a ring of formal power series over Z with genera- 

tors ci, c?, cl, . . . , the formula (4.4) completely determines the automorphisms 8* : H** 

(BU; Z) + H**(BU; Z) and t9* : H**(BU; Q) + H**(BU; Q). In particular, for the uni- 
versal Todd class 9 E H**(BU; Q), we have 

(4.5) e*(s-1) = 5 

If we write formally 

1 + ci + C2 + “’ = n (1 + ti), 
I 

then the Todd class r is given by 

9-=l-$L. i 1 - em” 

Now let M be a connected closed weakly almost complex manifold of real dimension 
2k imbedded in a sphere S2k+2N with k < N. Let v : M-+ BU(N) be the normal map of the 
imbedding and let r : M-t BU be the stable tangential map of M. The composition 
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MI* BU(N) + BU will be denoted by p, where the second map is the obvious one. Then, 
by (4.1) we have 

00/l==. 

Therefore, for any element v E H**(BU; Q), we have 

(4.6) z*(u) = /L*(e*(u)). 

Our task is to seek the subgroup ZZk of HZk(BU; Q) introduced in $1. It is equivalent 
to seek its transform 8*(Z2k) by the automorphism B*. From (4.6) it follows that 

(4.7) the subgroup O*(IZk) consists of those elements v such that ([Ml, p*(u)) E Z for any 
connected closed weakly almost complex manifolds M. 

Here ( , ) denotes the usual Kronecker index and [M] denotes the fundamental class 
of M. It is clear that we may restrict our attention to connected manifolds. 

The natural homomorphism H**(BU; Q) --, H**(BU(N); Q) is bijective in the dimen- 
sions 5 2k, so that in this range of dimensions we may identify both. Under that convention 
we may replace p*(v) by v*(v) in (4.7). 

Let x : S2k+2N -+ MU(N) be the map obtained by the Thorn construction from the 
imbedding M c S2k+2N. Then we have the following commutative diagram: 

HZk(BU(N)) --% H2k(M) 

- + 
1 

E + 
I 

JP+ *&u(N)) x’, H2k+2N s2k+ZN 
( )T 

in which C#J are the Gysin-Thorn homomorphisms, both being bijective. This holds for the 

coefficient groups 2 and Q. 

In view of this and (4.7), we see that 
(4.8) the subgroup c#?*(I*~) c H2k+2N(MU(N); Q) consists of the eZements v E HZk+*’ 

(MU(N); Q) such that (sZk+zN, X*(v)> E Zfor any X E nZk+&MU(N)). 

Consider the following commutative diagram: 

R’(MU(N)) P, HOm(?T2k+2N(Mu(iv)), R”(s2k+2N)) 

1 
Chk+N 

1 

chk+NS =Hom( . chk+N) 

H 2k+2N(MU(N); Q) 9-, H0m(7T2,+,,(ii'f~(N)), H2k+2N(S2k+2N; Q)), 

where the homomorphism in the first row is defined in $1, and the second row is defined 
by the analogous formula 

P(W) = x*(v)* 

The homomorphism Chk + N is the 2(k + N)-dimensional component of the character homo- 
morphism ch. The second row is an isomorphism. This follows from the fact that the usual 
Hurewicz homomorphism z2k+2N(ikfU(N)) 0 Q -+ H2k+2N(MU(N); Q) is an isomorphism. 

Now (4.8) just says that the subgroup @*(I’“) corresponds to the subgroup 
Hom(7c2k+2N(MU(N)), H2k+2N(S2k+2N; Z)) of HOWl(J'Czk+&MU(N)), H2k+2N(S2k+2N; Q)) 
by the isomorphism p. Also we know that chk+N(~“(S2kf2N)) = H2k+2N(S2k+2N; Z). Hence 
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the above diagram induces the following commutative diagram in which the second row 
and the second column are isomorphisms: 

RO(MU(N)) p. Hom(n,,+&4U(N)), z”(S2k+2N)) 

I 
chk+N 

I 
chk+wu 

@*(Izk) p. ffo???(~,,+,,(bfU(N)), ~2k+2N(~2k+2N;Z)). 

E 

Now the first row in this diagram is surjective by Theorem II. Hence c/z~+~ is surjective. 
In other words, 

(4.9) Chk+N(XO(MU(N)) = @J*(P). 

We now apply the differentiable Riemann-Roth theorem. J?‘O(M.J(N)) is a free 
RO(su(N))-module on one generator u, and we have 

(4.10) ch(y*u) = f#J(ch(y)~~-‘), 

for y fz KO(SV(N)). (S ee f or example [6]. This type of theorem is usually proved for finite 
CW_complexes. In the present case, we may pass to the limit because of the K*-admissi- 
sility of BU(N) and MU(N).) 

Let xk(u) denote the 2k-dimensional component of o E H**(BU; Q). Then, comparing 
(4.9) and (4.10), we have 

8*(1”) = X&h(BU(N))‘~-‘), 

where ch(BU(N)) is the image of ch : K”(SU(N)) --, H**(BU(N); Q). We see easily that 
K'(BU) + K'(BU(iV)) is surjective. Hence, the homomorphism ch(BU)-F’-’ -+ ch(BU(N))- 

J 6-l is also surjective. Therefore we have 

(4.11) 8*(1*5 = Xk(C~(BU)‘~-l). 

Apply 8* to both sides of (4.11). By (4.3), 0 ** = 1, and ch(BU) is invariant under 8*. 
Taking account of (4.5) we finally get 

12k = ~&h(BU)‘~). 

This is precisely the statement of Theorem I. 
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