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Introduction

The cyclotomic trace is a map from algebraic K-theory of a group ring to a certain
topological refinement of cyclic homology. The target is naturally mapped to
topological Hochschild homology, and the cyclotomic trace lifts the topological
Dennis trace. Our cyclic homology can be defined also for “group rings up to
homotopy”, and in this setting the cyclotomic trace produces invariants of
Waldhausen’s A-theory.

Our main applications go in two directions. We show on the one hand that the
K-theory assembly map is rationally injective for a large class of discrete groups,
including groups which have finitely generated Eilenberg-MacLane homology in
each degree. This is the analogue in algebraic K-theory of Novikov’s conjecture
about homotopy invariance of higher signatures. It implies for Quillen’s K-groups
the inclusion
(0.1) H{I; Q)@ ZGB Hi_ 4 (I’QYcKJ(ZIN @O .

k21
On the other hand, the cyclotomic trace gives information about A(x). We show
that its p-adic completion contains Q*S*(2 BO(2)) x 2*S* as a direct factor, at
least if p is a regular prime (in terms of number theory). This in turn gives ‘

(0.2) holim BCP*(D"); ~ Q*S*(BO(2)); x T,

(after p-adic completion, p regular) where Cf(D") denotes the space of differenti-
able pseudo-isotopies of the n dimensional disc, and T, is a torsion space (possibly
contractible), cf. [W4].

The topological cyclic homology space TC(F, p) can be defined for any “fun-
ctor with smash product” in the sense of [B] and for any prime p. Such functors
include group rings, RI" and homotopy group rings, Q°S<(I',). At the time of
writing only limited information is available about TC(RI", p) in the group ring
case, and anyhow this is not the subject of the present paper; here we give, for any
group-like topological momoid I', an explicit calculation of TC(2*S*(I',), p) in
terms of more familiar objects in homotopy theory.

* Partially supported by an NSF-Grant
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Fixing the prime p, let TC(X, p); be the infinite loop space defined by the
following homotopy Cartesian diagram:

TC(X,p); ——— Q*S™(Z(ES' x5 AX));
(0.3) N | Tt

Q=S®(AX,)) —20  QOS*(AX,)) .
In (0.3), 2, (Y) denotes the suspension of Y, = YII{ + }, AX is the free loop space
of X, Trf is the S*-transfer and 4, is the p-fold power map, i.e. 4,(4)(z) = A(z?) for
the loop A(z) in X.
For a topological group-like monoid I' (i.e. 7o I” a group) we show in Sect. 5 that

(0.4) TC(Q=S™(I",),p); ~ TC(BI,p); .

Given a “functor with smash product”, the cyclotomic trace is an infinite loop
map

Tre: K(F)— TC(F, p)

from its algebraic K-theory. In the special case where F(U)=U. A QX,
K(F)= A(X) and

Tre: A(X )y - TC(X, p)y .

This is a highly non-trivial invariant.

To analyse it in the basic case when X consists of only one point we use
a modified version of Soulé’s construction of the Borel regulators in K;(Z), [S2], to
get a map

0.5) e*: Q2S*(Z, CP®)) — A(%)}

for each ee}i_nl(RCpm)x. Here R = Z[1/g], g a generator of the units modulo p?
and the inverse limit is over the norm maps, and C, denotes the cyclic group of
order k.

The composition oc Trc,o¢” is a self map of 2°S*(Z, CP*);, and since it is
an infinite loop map it is determined by its induced self map of the suspension
spectrum of X, (CP*). With the aid of [BM] we show (for a specific choice of &)
that

(0.6) aoTre o Hyyp(Z 4+ CP*, Z,) » Hy 1 2,(2+ CP*; Z,)

is multiplication by (g™" — 1)L,(1 + n; w™") where L,(—;w™") is the p-adic
L-function and w is the Teichmiiller character. (For p = 2, the number should be
interpreted to be 2). One may factor ¥ over Q®S*(2B0(2)) and can use the
realification map €P* — BO(2) in the target to deduce (0.2). 5

We note in passing that the reduced functor Trc, from A(X); to TC(X, p) is
a homotopy equivalence for X simply connected by [BCCGHM].

There is a version of A-theory based on p-completed spheres; we denote it
A(BI'; Z,). 1t maps to K(Z,I') by linearization. For this theory one can in (0.5) use

ge }E (Z,Cpn)". It is possible to choose & in such a way that the number theory

disappears from (0.6): For n £ —1(p — 1) the composite is an isomorphism. For
n = —1(mod p — 1) it multiplies by (1 + n)p. This is in good agreement with [S2],
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and one may speculate about an explicit connection between TC (ip, p) and the
¢étale cohomology of Spec®,, and between the étale chern character and the
cyclotomic trace.

The paper is divided up into two parts. The first part, consisting of five sections,
contains the construction of the topological cyclic homology and of the cyclotomic
trace, and is to a large extent equivariant generalizations of results from [B]. The
second part of the paper examines the cyclotomic trace invariant for A(x) and
derives the K-theory analogue of Novikov’s conjecture.

A couple of notational comments are in order. Throughout the paper, Q(X)
denotes the unreduced stable homotopy space of X, i.e.

Q(X)=Q"S™(X,), X,=XL{+}.

For based spaces X the reduced version is Q (X)=Q*S*(X). We have used X, to
denote the completion at p of X in the sense of Bousfield and Kan. The paper is
written in the language of infinite loop spaces (rather than the equivalent notion of
connected spectra). This has at certain places some funny looking notational
consequences. For example, X A Q(Y) is identified with Q(X A Y).

The cyclotomic trace is very much inspired by work of T. Goodwillie. In fact it
is one way of making precise his ideas of epicyclic spaces as explained in a cel-
ebrated letter from him to F. Waldhausen. We are indebted to G. Carlsson for
drawing our attention to Soulé’s paper [S2]. We thank F. Waldhausen for valuable
philosophical as well as practical suggestions.

The proof of the K-analogue of Novikov’s conjecture is inspired by ideas of
R. Cohen, J. Jones and M. Karoubi. We sincerely thank J. McClure who read the
entire manuscript. His detailed comments made us change the exposition at many
places, and in fact rewrite several sections completely. In particular he pointed out
a serious mistake we had made in our definition of the I'-space structure on
TC(X, p). Finally, J. Rognes and L. Hesselholt have made valuable comments on
the present version.
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1 Edgewise subdivision and cyclic spaces

Given a simplicial set X, and a natural number r there is an edgewise subdivision
sd, X, whose topological realization is homeomorphic to that of X, cf. [Se2]. We
present a variant of this construction.
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Let 4 be the simplicial category with objects [n] of ordered sets,
[n]1=1{0,1,...,n}, and order preserving maps as morphisms. Consider the
functor

sdy: A — A

with sd,[m — 1] =[mr—1] and sd(f)=fU...Uf (ie. sd.(f)(am + b) =
an + f(b), when fi[m—1]>[n—1Jand 0<a<r,0 < b < m)
The r-fold edgewise subdivision of a simplicial set (or space) X,: 4°° — sets is
the composition sd, X, = X,°sd, with sd, X, = X4+ 1),-1-
Observe that the face and degeneracy operators in sd, X, are given by
di: sd, X, = sd, X1
So5d, X, —>sd, X, 11
with
gf =diodirp+1)° - 0ditp- w1
5i = Sit-D+2 % - Sitn+2)°S;

where d; and s; are the face and degeneracy operators for X,.
The standard simplex 4™~ ! is the r-fold join of A™ ! with itself, and we

1 1
have the diagonal embedding d,; A™ !'—A4™ 1 dw=-ud.. .(—B;u,
r
A" = {(ug, . . ., u)| D uy =1}

Lemma 1.1 The map D,: |sd,(X.)] — | X.] of topological realizations induced from
Ixd: Xpme1 xA™ V5 X,,. 1 x 4™ 1 is a homeomorphism.

Proof. This is easily checked when X, is the simplicial 1-simplex A[1]. It follows
for the (diagonal) of any product 4 [1]* and then for the simplicial k-simplex 4[k],
upon using the retraction 4[k]. ¢ 4[1]¥ — A[k]. to check that D, is both injective
and surjective. The case of a general simplicial set is now obvious. [

The second edgewise subdivision of the standard 2-dimensional simplex and
Segal’s original subdivision can be pictured as

st(Az) : Segal's subdivision:

Recall A. Connes’ extension A of the simplicial category A. It has the same
objects, but the morphisms are extended by the ‘cyclic permutation’ t,: {#] — [n],
and one has the extra relations

70 = 0i~1Ty~1, 1Si<nm
1"6025,,
Tn0; = Gi—1Tp+y, 1 SISH

(1.2) Ta00 = OpTh+1 -
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Moreover, the (n + 1)’st power of 1, is the identity:
(1.3) mtt=1d.

If X, is a cyclic object, i.e. a functor from A°?, then the r-fold edgewise
subdivision has a simplicial action of the cyclic group C, of order r. Indeed, the
(m — 1)-simplices of sd, X, is equal to X,,,_, and 7, ., generates the C,-action.

More generally, observe that (1.2) alone implies that 2% ' commutes with §; and

o; in that
T =0ty
(1.4) e, = 01013 .
Definition 1.5 Let A, (1 £ r < o) be the category which contains 4 and morphisms

1,: [n] = [n] subject to the relations (1.2) and the relation ;""" =id (when
r < o).

A AfP-object is a functor from A?P, so is for r = 1 a cyclic object in the sense of
Connes.

By (1.4) every A/P-space has a simplicial C,-action. Actually, the topological
realization of a AfP-space has a continuous circle action which restricts to the
simplicial C,-action. Precisely, let 4,[n], be the A?P-set of morphisms

[m] — A,([m], [n])
and let A be the realization of its underlying simplicial set. The functor [n] — A} is
a A,-space.
Lemma 1.6 There is a homeomorphism A = RR/¥Z x 4", and the action of 7, on A, is

given by 1,(0; ug, . . ., u,) = (0 — ug; Uy, . . ., Uy, Ug)-

Proof. This follows from [J, Theorem 3.4] or from [DHK]. Indeed, the usual
triangulation of IR x A" with vertices (i, v) for ieZ and ve Vertex(4"), ordered
lexicographically, gives a model for A,[n],. The identification of the layers t x 4"
and (t + r)x A" corresponds precisely to the extra relation ti"* " =id. Thus
[A,[n].] = R/rZ x A". The action of 7, is equally clear. (1

It follows from 1.6 that the realization of any /4;?-space has a canonical action
of R/rZ, hence a circle action upon identifying 6 + rZ with e*™®”. There are two
possible realizations of such an X,, namely

(X =Hd4"x X, /~; (fit,x)~(t,f*x) forfed
(1.7) (Xa =A% X, /x5 (fuh ¥) =2 (A,f*x) for feA, .

The first one is the usual realization of the underlying simplicial set. The second has
the R/rZ action from 1.6.

Lemma 1.8 The inclusion A" < AF induces a homeomorphism of | X .| onto | X.|4,.
There are functors
(1.9 P.oA— A, sdA— A

The first one is the identity on objects and on morphisms from 4, and is the
surjection on {(z,> (replacing the relation t*"*Y = 1 by 7;"*" = 1). The second
functor extends the subdivision functor on 4 by sd(t,-1) = Tpn—1.
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By P, each AJP-space X, becomes a A2-space, denoted P, X, or just X,, and the
identifications in 1.8 makes | X,| both an IR/rsZ-space and a R/sZ-space. The two
actions p,, and u, can be compared.

Lemma 1.10 There is a commutative diagram

R/rsZ x| X.| ——— |X.]

pxid \ s
R/sZ x| X,|
where p is the projection induced from the identity on R.
Proof. It is direct from 1.6 that P, induces a commutative diagram

P
n " n
Ars > As

I |
R/rsZ x 4™ BLLEN R/sZ x A" .

The rest follows from the diagram

| X

~ ~

([ALxP,X,) ~ — [[Arx X,/ ~

u ||
P Xy, —— (XJu. O

The functor sd,: A,; — A, associates to each A -space X, a A,,-space sd, X,, and
we have the homeomorphism

D,:{sd, X.| —|X.|
of 1.1; R/rsZ acts on the domain and R/sZ on the range. We have

Lemma 1.11 The following diagram is commutative

R/rsZ x |5d, X.| —220 RjrsZ x| X.| 2% R/sZ x| X.|
iy R b
ISd,X.| __"__) !Xu|

where 1/r: R/rsZ — R/sZ is induced from division by r.

Proof. The argument is similar to the one in 1.10 except this time, since sd, is not
the identity on objects, we get a simplicial map

sd,: Ays[n — 1] - sd. A [rn — 1]

whose realization we must identify. We claim there is a commutative diagram of
realizations:

ARty (sd A frn — 1] —— AT

l - l/rxd l B
R/rsZx A" ! — R/sZ x 4™ 1
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where d, is the diagonal map (cf. 1.1). This uses the description of A} from [ J]
(cf. 1.6). We leave the details for the reader. [J

If we identify R/mZ with S' in the standard fashion (0 <> e?™®™) then 1.11
simply says that

D,:|sd, X,| —|X.]

is an S'-homeomorphism.
Let us finally remark that the subdivision functor of course can be iterated and
that

sd,sd; X, = sd, X, .
Moreover, the diagram

|sd,s X —— |sd, X.|

(1.12) Df\\ [//m

is commutative.

2 The cyclic bar construction

Given a topological, group-like monoid G and a two-sided G-space E we can form

the cyclic bar construction NJ(E; G), cf. [W1]. It is the simplicial space:
NP(E,G)=ExG"

dO(eagl’---:gn egl:gz,---agn)

Il

egl7--~’gigi+1,---9gn)7 0<l<n

)=
) =
du(e, 915 - -5 gn)
dile, g, ... 9n)

)=

(
(gn€: 915 - -+ 5 Gn-1)
(
sde, g, - s ) =(eg1, - 59 L, Givtse s Gn)-

If E = G, considered as a two-sided G-space via multiplication, we write NP(G)
instead of N(G, G). Setting

tn(gO’ cers gn) = (gmgOa s gn—l)

it becomes a cyclic space (with ¢, corresponding to t,).
The r-fold edgewise subdivision sd, N (G) is again a cyclic bar construction,
namely

(2.1) sd, N> (G) = N2> (t(G"), G")

where G is the r-fold Cartesian product of G and t(G") = G" but with a twisted
two-sided G"-structure:

(el’ s er)'(gla ey gr) = (elgla e ergr)
(gla ceey gr)'(el’ sy er) = (grel’gleZa sy gr—ler) .
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Let n: NP*(G)— N.(G) be the simplicial map into the usual (one-sided) bar
construction which in simplicial degree n maps (go, . .., ¢u) t0 (g1, ... > Gn)-
Combining with the S!-action on |N&(G)| we have the map

S NG| —E— |NP(G)|——— | N.(G)]

whose adjoint is 2 map
(2.2) [ IN&(G)| - ABG

into the free loop space of BG = | N,(G)]. Observe that fis an S *-map when we give
ABG the S'-action from rotating the loops. It is well-known that fis a non-
equivariant homotopy equivalence, [BF, G, since 7, G is assumed to be a group.
We want to prove a corresponding equivariant statement. Let

4, N2(G) - sd, N(G) = NP (+(G"), G")

be the diagonal map which sends a k-simplex (gg, . . . , g,) into (go, - . . , g, with
gi=(9i...,9)eG".

The simplicial action of the cyclic group C, on sd,N&(G), generated by
tiyyr—1 on the m-simplices, corresponds under the identification (2.1) to the
permutation action on G". Thus

(2.3) 4yt N(G) = (sd, NP(G)) ;

this is a simplicial isomorphism, whose realization is denoted 4,. When G is
a group there is the injection

i: No(G) — NZ(G)q,
(24) i(gl""agn)z((ngi)_laglﬁ'"5gn)a

split by the map n used in (2.2). The realization of i corresponds to the inclusion of
BG in ABG as the point loops.

Proposition 2.5 For a topological group G,
ING) —'—  INZ(G)] —2 |sd, NO(G)[
li 1

IND(G) —2s [sd,N(G)] 2 |sd, N&(G)|°

is homotopy commutative by a homotopy D}, which is natural in G. Moreover,

D}, ;= 4.° Dy,
Proof. Suppose first that s = 1. Consider the homotopy
d, A" > A%, . .« A" (r factors)
dW=tur®.. . tu/r®@ur+ (1 —t)y) 0=5t=1.
For t = 1 this is the map d, used in 1.1. Let
D;.:|sd, N2 (G)| - INP(G)|
be the corresponding homotopy of the map D from 1.1. Since

d,.’OIA"‘*A(’H.l)r_l
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is the (n + 1)(r — 1)-th iterate of the 0-th (co)face we have commutativity in

m+1)r—1)
1xdy

A"x [sd,N¥(G)], —— A"xNZ(G)
! ) !
|sd, N (G))] INO(G)] .

A direct calculation shows that

d(n+1)(r_“Ar(gOa ) gn) = ((ngi)r’190$ gis oo s gn) .

But [[g: = 1 when (go, - . ., g»)€Im(i). Hence D, > 4,°i = id which proves the
claim. For s > 1 one takes D}, = 4,°D},. (J

Propeosition 2.6 For a group-like topological monoid G and for each finite subgroup
Cof St

fHINZ(G)|C - (ABG)
is a homotopy equivalence.
Proof. First observe that
4, PNP(G)->sd . NP(G)

is a map of A?P-spaces with P, from (1.9). It follows from 1.10 and 1.11 that the
composition

,: IN9(G)|—s | sd, N (G)| ——— |N(G)|

has the following equivariance property for the S!'-action:
2.7) A4.(z"-x) =z 4,(x)

for ze S, xe|NZ(G)|. Let g: INP(G)| - A|NE(G)| be the adjoint of the §*-action.
We have the diagram

qu An

INF(G)S —— (AINZ(G)) —— (AIN(G))™
(2.8) 14 Te, Te

IN?G) —— AINPG) —Zo  AINLG)|
with P, the power map, P.(6)(z) = a(z"). We claim that the outer diagram in (2.8) is
homotopy commutative. For )_ce|ny(_G)|, (P, ° g)(x) is the loop o(z) = z"-x and
ge A4,(x) is the loop &(z) = z- 4,(x) = 4,(z"-x). So we have left to show that the
maps
7, mo 4, |N&(G)| - |N.G]|

are homotopic. The homotopy is n° D} >4, with D}, the homotopy from 2.5.
Clearly

P.: ABG — (ABG)"

is a homeomorphism. By (2.3) the same is true for 4,, so f " is conjugate to f. Since
fis a homotopy equivalence, so is f<. [
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Remark 2.9 The equivariant Whitehead theorem asserts that an equivariant map is
an equivariant homotopy equivalence if and only if the induced maps on all fixed
sets are homotopy equivalences, at least if the transformation group in question is
compact. Thus f: |[N?(G)| - ABG is a C-homotopy equivalence for each finite
C < S'. However, f is not an S *-equivalence, since

IN2(G)S' = {geGlsolg) = t150(9)} = {1},
(ABG)*" = BG .

We need a blown-up version of N(G), e.g. the bi-simplicial set used in [B1], to get
an S!-equivalence.

The homotopies specified in Proposition 2.5 gives a well-defined map

I |IN.(G)| - ho(]iﬂ|sd,Nf”(G)|
D

with the limits running over the compositions
D,
D: |sd,s NP (G) | — |3d,s NP(G)| —— |5d, NP (G)| .
The reader is referred to [BK, Chap. XI] for the definition and general properties of
homotopy inverse limits. For the purpose of this paper it suffices to replace the
limit system above by the simpler system where r runs over the powers of a fixed
prime number p. In this case there is a more well-known description of homotopy
inverse limits which we now recall. Given a string of spaces
. .—)SnL’Sn_l—". . .—>S0
we can replace it by a string of fibrations

o S (S, ) > = (So)

by iterating the usual mapping path space construction which converts a map into
a fibration, and one has
holim S, =~ lim f(S,) .
«— —

This follows from [BK, XI, 4.1 and 5.6].
The homotopy groups of ho(]_i_nl S, can be calculated from the exact sequence

0 — lim“Yx, .S, - n,holim S, - lim 7, S, — 0
— — —

cf. [BK, XI, 7.4] or [Mi]. If we assume that each S, is an infinite loop space and g,
an infinite loop map, and this will always be the case for us, then one has an exact
sequence

0— im ™[ XX, S,] - [X, holim S,] — lim [X, S,]— 0
— — —

for every X. The limY-term is in general non-zero.
bkl
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We shall use at several places below that lim’ A, = 0 if A4, is a string of
compact abelian groups. Indeed, lim" 4, is the cokernel of the map [T 4, - [] A,
which sends (a,) to (5,(a,) — a,— ). This has dense image and [ | 4, is compact; thus
it is onto.

Lemma 2,10 Suppose (S,, 0,) is a string of infinite loop spaces, and that f,: X — S,
are maps so that ¢,°f, = fu—1. There is a homotopy class [ ], f X - holim §,,
inducing [ f,]. Its p-adic completion [f;] is well-defined, when each [X2X,S,] is
finitely generated.

Let us return to the inverse limit system at hand. It is direct from the definitions
to check that there are commutative diagrams

AN (G 2 |sdpne . NE(G) [P
(2.11) b Ip
Isd s NO(G)[Er —2s  |sdpuNE(G) [
where 4,1s the homeomorphism induced by (2.3). There is an induced homeomor-
phism
A, ho}i_m_ |sdpn NP (G)|C — ho}i_rg |sdpn N &(G)|E

and it is clear from (2.5) that 4,1 = 1. Let ®,= 4, be the inverse homeomor-
phism. We have

(2.12) I |NJ(G)| - (holim |sdpu N2(G)“)®

Our preference of @, over 4, in (2.12) will become apparent in Sect. 5 below.

In our definition of the cyclotomic trace (Sect. 5) we need to apply the above in
a situation where G is a group-like monoid (a topological monoid with 7,G
a group). The map I is not a priori defined for monoids, since it uses strict inverses.
However, there is a well-known trick to get around this difficulty.

There is a functor G — G* which replaces a topological monoid by a group,
and another functor G — GV (the free group) together with natural transforma-
tions

GG -»G"

cf. [BF, p. 3117 or [G, Sect. I, 1.8].
When G is group-like the induced maps

IN.G)] « |N.(G¥)| = |N.(G )|
|SdpnN.cy(G)|Cp" «— lSdpnN.Cy(Gv)]Cl’" - lSdpan‘v(GA )Icp"

are all homotopy equivalences. Since homotopy inverse limits, and in particular
homotopy fixed points are homotopy invariant notions, we get a well-defined
homotopy class

(2.13) I: [N.(G)| - (holim |sd, N5¥(G)| )"0

for every group-like topological monoid. (Here h®, indicates homotopy fixed set,
ie. the homotopy equalizer of the self-maps @, and id.)
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One may prove that (2.12) is equivalent up to homotopy to the map
I'°P: BG — (holim (ABG )¢» )5’
—

which embeds BG as the constant loops, in the homotopy limit over the inclusions
of fixed sets. Basicaily this is a consequence of (1.11} and (2.6).

3 The equivariant topological Hochschild space

Given a ring R and a bi-module E we can form the simplicial space Ng(E, R).,
analogous to the cyclic bar-construction of Sect. 2. It is the simplicial space

Ng(E,R),: [n] > E®R®"

with the evident face and degeneracy operators. If E = R it has a cyclic structure.
In [B] this construction was generalized to the category of infinite loop spaces
(spectra), replacing R with a “ring up to homotopy” and tensor product with smash
product. We need equivariant versions.
Recall that a functor with smash product, an FSP, is a functor from pointed
spaces to itself together with two natural transformations

1y: X - F(X)
pxy: FIXYAF(Y)-> F(X A Y)

such that

() ux.y(y A Iy)=1x .y

(1) px A v.z(@x, v A 1dpgz) = px,y A 2(dpx) A Uy, z)
(3.1 (1)) F(T)e px,y°lx A idpy) = py,x°(idpo) A Lx)eT
We shall always assume F is convergent in the sense that the limit system

1,2 F(S'X)- n(Q T F(STX)),

given by product with 1., stabilizes for every given r.

Example 3.2 (i) Our basic examples will be of the form F(X)=I(X)=X A T',
where I' is a topological (group-like) monoid. (ii) Given one FSP we may construct
the associated matrix functor by M, ,.(F)(X) = Map([m], [n] A F(X)).

Here [m] = {0, ..., m} with 0 as base-point, and Map denotes the set of
base-point preserving maps. There are associative pairings

My mFUX)A Y > M, o(FYX A Y)
My m(FUX) A Mo (F)(Y) > M, ((FYX A Y).
For n =m, write M,(F) or F, instead of M, ,(F); it is an FSP. When n % m,
M, .(F)is not an FSP, but there is stili a limit system, and convergence is defined
as above. (iii) Given any ring R there is an FSP R defined by R(X') = RX,/R(x), the
reduced simplicial abelian group of the singular complex X.
Let I be the category whose objects are the natural numbers, considered as

ordered sets n = (1, ..., n) and whose morphisms I(n, m} are the injective (not
necessarily order preserving) maps.
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The standard inclusion n — m induces a map
QF(§")—> Q"F(S™)

upon taking the product with Lg.-. on the right. The symmetric group X, acts on
(1,...,m) and hence on S™ and F(S™), and on Q™F(S™) by conjugation. Every
morphism fe I{n, m) can be decomposed as f'= g <i with ¢ X, and i the standard
inclusion. One gets a functor on I with f, = o4 i,

fs: Q'F(S™) > Q"F(S™) .
Indeed, 64 °0iy =i, whenoe X, _,.
The category I is not filtering, but we can still take the homotopy direct limit.
Definition 3.3. QF = hoh_m) (n—> Q"F(S™)).

1

It is proved in [B, Theorem 1.57] that the above homotopy limit is a good one in
the sense that Q"F(S") approximates QF. For the functor ['(X) =X A I',,

QI =Q(I'y=Q*S*(I'y).

Roughly speaking, the construction THH,(F ) is the Ng -construction for the
“ring up to homotopy” QF. Precisely, define the simplicial space THH,(F) to be

(34 [p]+—holim Map(S® A ... A S F(S“) A ... A F(S™)).

Ip{»l

The face operators are induced from functors [7*1 — [? associated to concat-
enation of sets, and for the last one, with cyclic permutation followed by concatena-
tion. The degeneracy operators are similar, and the cyclic structure is induced from
cyclic permutation.

Often we shall shorten notation and denote the mapping space in (3.4) by

QUIF(S®) A ... A F(S'*) where |i| = Zl and i = (i, . . ., 1,
The topologlcal realization of (3.4) is the topological Hochschlld space, denoted
(3.5) THH(F)=|THH.(F)|.

Let R denote the regular representation of the cyclic group C, and let
iR=R®...®R (i summands). Its one point compactification S*® is, as a C,-
space, equal to the r-fold smash product of the i-sphere. In general X @ denotes
r-fold smash product.

With these notions the subdivision sd, THH,(F) can be rewritten as the sim-
plicial space

(36)  [pl—holim Map(S®® A ... A S7R F(S©)” A ... A F(S)7).

Jet

The simpiicial action of the group C, is induced from conjugation in the
mapping space, with cyclic action on the r-fold smash products.
Given a C,-space A, we write

Qc,(4) = holim Map(S*%, S8 A A.)

k

(and not, as is unfortunately more customary, Q¢{(A4,)).
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Proposition 3.7 Let I be a group-like topological monoid and I the functor of 3.2(3).
Then there is a C,-homotopy equivalence

|sd, THH.([')| ~¢,Qc,(ABI') .
Here the free loop space ABI has its usual C,-action.
Proof. Consider the bi-simplicial set

H holim Map(S©® A ... A SR SR A A SR A(TTY).
—

Ip+1 XIq+l

pa =

The diagonal complex 6H, is precisely sd, THH,(F'). The realization of the diagonal
complex is homeomorphic with the realization divided into two steps, by first
realizing each column and then realizing the resuiting simplicial space.

We have

|H,. = hol_iE{Map(S""R Ao A SERISOR A A SR A S, N 1)

e+t

~ holim Map (SR A ... A SR SR A A SR A ABI,).
—

e

By (2.6) this is a C,-homotopy equivalence. In particular
|Ho,o| = Qc,(ABI'),

a homotopy equivalence of C,-spaces. The face operators
Oi{Hpol = [Hpo 1]

are all equivariant homotopy equivalences, and give an equivariant homotopy
equivalence

H,,oll = 1Lp]—=|H,p.|| > |Ho,.| .

Indeed by the equivariant Whitehead theorem it suffices to check that the fixed sets
are homotopy equivalent. Now there is a map from the simplicial space
[p]+ |H,.|° to the constant simplicial set | H, .| whose levelwise homotopy fibres
are contractible. Hence the homotopy fibre of the map from |[p]— |H,.| | to
|Ho..|€ is contractible, cf. [G, 1.1.3]. OJ

Morita invariance, in one formulation, gives a homotopy equivalence of the
cyclic bar construction for rings

(3.8) Ng(R, R) =~ Ng(M,(R), M,(R))

where M (R) is the full matrix ring of a x a matrices. The proof of this, given in
[W2] can be generalized to THH (F) as explicated in [B]. We want an equivariant
extension.

Proposition 3.9 There is a C,-equivariant homotopy equivalence between the realiz-
ations

|sd, THH,(F)| ~¢,|sd, THH.(M,(F))|
with M (F) defined in 3.2.
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The proof of 3.9 is based upon three easy lemmas in equivariant homotopy
theory. We first state and prove these lemmas and then return to the proof of 3.9.

Lemma 3.10 Let X be a (k + N — 1)-connected space, and let o be the C,.-map
6: (Q*X)" - Map(S*R, X )

given by smash product. For each C;< C,, the map ¢% of fixed sets is
({(r/s + 1)N — 1)-connected.

Proof. Consider the fibration sequence
Mapc, (S*®/S*, X ©) — Mapc, (S}, X ) - Map(S*, X )

induced from the inclusion of the fixed set $* = (S*}R) into S*%, d = r/s.
The j-th homotopy group of the fiber

7;Mapc, (SHR/S5, X ) = [S7 A SE/SH, X ]
is zero if j + k(r/t) < (r/t)(k + N) for all proper cyclic subgroup C, of C,. This
follows by elementary obstruction theory. In particular, it vanishes forj < 2(r/s)N
The non-equivariant map
o: (Q¥X ) - Map(S*d, X @)
is (d + 1)N-connected. It follows that ¢°* is always (r/s + 1)N — 1 connected. [J

Lemma 3.11 Let £ X - Y be a C-map with f© N({s)-connected for each subgroup
C, with N(s) 2 k(r/s) + N(1) — kr. Then the induced map

fy: Mapc, (SR, X) » Mapc,(§*%, Y)
is (N(s) — k(r/s))-connected.

Proof. The homotopy fiber F of fis a C,-space with F¢(N(s) — 1)-connected. The
fiber of the induced map f, of the mapping spaces is Map¢ (S*%, F), which is
(N (s) — k{r/s) — 1) connected, again by elementary obstruction theory. L]

Lemma 3.12 Suppose X is (k — 1)-connected and f: X — Yis (k + N)-connected. The
C,-map f@: X® - Y™ induces a (k(r/s) + N)-connected map on C-fixed sets.

Proof of Proposition 3.9 We follow the outline from [W2] and define a certain
bi-simplicial space, which maps both to sd, THH,.(F) and to sd, THH (M ,(F)). Let
us use the shorthand notation F, instead of M (F), and F,, = M, ,(F). For
i=(ip,..., i, and j={jo, ..., j,) define

H(i,j)=F@®)A...AF(S" ) A FiaS®)AF(S®)A. .. AF(S%")A F, 1(S%) .

It induces a functor Q&+ H (i, jronIP*1x 1971 where |i| = Y iy, |j| = Y j,. We
are interested in the homotopy fimit, or rather in its r-fold subdivision. First,

(i, j)> Map(S'48 A SUK H(i, j))
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is a functor on I?*!xI9*! and we can define a bi-simplicial space with a C,-
action,

Xpqr)=holim Map(S"¥% A SY% H(i,j)").

I+t et

The two sets of face and degeneracy operators are similar to the case r = 1(d; uses
the action F, ;(S7¢) A F($) = F, (S’ A §°); d, and dj use a twisted multiplica-
tion similar to (2.1) etc.). Define

G'(Gos - - s Jgr1) = Fr,alS) A Fo(S7) A ... A Fo(879) A F, 4(S7e)
G (igs - -5 ips1)=Fa1(S®) A F(S") A ... A F(S?) A Fy 4(S*1)
so that
H(i,j)=F(S®) an... A F(§%) A G'(ip ])
(39.1) H(i,j) = Fo(§°) A ... A Fo(8771) A G"(jgo 1) -
Multiplication defines maps
G'(jos - - sdg+1) = Fljos -+ Jg+1)
(39.2) G"(igs . - - s ip+1) ™ Folios . - 5 ips1)
where we have used the notation
F(j)=F(S? A ... A Sh)=F(S\)
Fo(i)=F 8% An...AS%*)=F, (S,

We can subdivide and get induced maps from X, .(r} to bi-simplicial spaces which
are constant in one direction, namely

([rl. [ql)—>sd, THH (F) (constant in g-direction)
(p).lq))—sd. THH (F) {constant in p-direction)
and hence maps of realizations
(3.9.3) Isd, THH.(F,)| < | X., .|| = |sd, THH.(F)| .

(The double bar indicates two-fold realization: First realize in one direction, and
then in the other direction).

We will argue that the maps in (3.9.3) are C,-homotopy equivalences. This is the
case non-equivariantly (or equivalently for r = 1) by [B], [W1].

Consider the simplicial spaces

[4]+ holim QURG'(j) = sd, B,

Iq+2

(3.9.4) [p] holim QURG"(i )" = sd, B,
fniserd P

Ip+2

with simplicial C,-action, analogous to (subdivisions) of the 2-sided bar-construc-
tion for rings (cf. [W1]).
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The maps of (3.9.2) define maps into simplicial objects
[g]+ holim QVIRE (j
iy L
Iq+2

[p]+ holim QUIRF (i )"
—3

7+2
which in turn are equivalent to the constant ones
: iR i)
[g]— holgrl> QIRF(S))
1
: iR i(r)
(3.9.5) [p]— hol@} QUEF(SH .
: 1
The key point in the proof is to show the above maps, induce C,-homotopy
equivalences
|sd,B,| — holim Q/RF (S7)"
—
1
(3.9.6) Isd,B!| — holim Q®F (S5
—
1
or equivalently, homotopy equivalences of every fixed point set. As mentioned
above, this is the case for r = 1, and will be proved in general by rewriting the
spaces in question, using the Lemmas 3.10, 3.11 and 3.12.
In the rest of the proof we assume for notational convenience that
F(SY)— QF (')

is (2i — 1)-connected.

Let us write G for either one of the four objects G', G” or F or F, of (3.9.2).
Supposez = (ig, - - . , ip+1) satisfies i, > N for all v, and let f: i — j be any morphism
in 172 Then we have:

Sublemma 3.9.7 The induced C,.-equivariant map
f QllIRG(l)(r) N QIJIRG( )(r)

is equivariantly (N — 1)-connected in the sense that each fixed set map [ is
(N — 1)-connected.

Proof. We may assume fis a product of standard inclusions, and let j = i + k. Then
G} » QMG(j)is (il + N) — connected, and its r-fold smash power is (r/s|i| + N)-
connected on C,-fixed sets by (3.12).

Since (Q""G(]))(’) - QUMRG(jY is ((r/s + 1){i| — 1)-connected on C,-fixed sets
by (3.10), the composition is (r/s|i| + N — 1)-connected on C-fixed sets. Apply
(3.11) to finish.

Next, consider the subcategory I i § of sequences (ig, i1, ..., ip+1)
with iy = m + iy. We claim to have a C,-homotopy equivalence

Tp+2 pt2

; OR (5 ; iR (7 ( 1))
3.9.9) ho_lin)!) G(i) —>ho_h_n3§2 ()" .

I~p+2 [p+2
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This is contained in [B, Lemma 1.4] when r = 1. The proof of the C,-equivariant
statement is completely similar, based on (3.9.7).

The assignment (io, . . . , ip+1)=>(m + io, i1, - .., ip+1) is a bijection of cat-
egories, m + (-): I?*2 > J7*2 and in view of (3.9.8) we obtain a C,-equivariant
homotopy equivalence

(3.9.10) holim Q'¥®G(i)® — holim Q™RQEURG(m + i) .
— —
Fax r+2

In the target, Q™® can be moved outside the limit. Thus we have obtained
a degreewise, equivariant delooping of the simplicial spaces in question, namely

i [{IR ()
(3.9.11) [p]I—Pholl_IHQ G(m + i)

with the obvious face and degeneracy operators (corresponding to the two-sided
bar-construction). Its topological realization is also an equivariant delooping, cf.
[May 1, Sect. 12].

The deloopings (3.9.11) apply to all four functors in (3.9.2). We can now study
the first map in (3.9.6). There is a diagram of simplicial spaces, which in simplicial
degree g has the form

holim (Q¥G' (m + i))” ——— holim QERG'(m + i)®
— —

Jat? Ja+2

¢7 ¥

ho_lig(Q'i'F(m +1i]))" ——— holim QURF (m + H)®

Jr+2 a2

The vertical maps are induced from (3.9.2) and the horizontal ones from smash
product. The topological realization of the left hand ¢ is an r-fold smash product
of a homotopy equivalence, by [B, Lemma 2.5], so is a C,-equivariant homotopy
equivalence. The horizontal maps induce (r/s + 1)m-connected maps on C,-fixed
sets by 3.10. We conclude that the realization [y,| is ((r/s + 1)m — 1)-connected,
and can finally apply Lemma 3.11 to see that (Q2™®|y,|)"* is (m — 1)-connected for
each subgroup C; < C,.

In the above m was arbitrary, so letting m — oo we see that the first map n
(3.9.6) becomes a C,-equivariant homotopy equivalence. It follows that the right-
hand map in (3.9.3) is a C,-homotopy equivalence. This ends the proof of
Proposition 3.9. O

We finally have to compare the various subdivisions under the subdivision
maps Dy, cf. 1.1 and 1.12. We state the necessary result below, and leave the proofto
the reader.

Proposition 3.13 With the notation of (3.9.3) there exists a C,-equivariant homeomor-
phism

Dy [ X., (sl = [ X.,.() ]
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such that the diagram
lsde THH.(M.(F))| < || X..6n] — |sd, THH.(F)|

1 b, b, | b,
|sd, THH.(M,(F))| « | X..nl - |sd, THH.(F)|

is homotopy commutative in the category of C,-spaces.

In particular we obtain a homotopy equivalence

(3.14) holim |sd, THH.(M,(F))|" — holim | sd,,, THH,(F)|"
D D

cf. Sect. 2 and [BK, XI1.5.6].

4 The topological Hochschild spectrum

The topological Hochschild space THH (F), discussed in Sect. 3, turns out to be the
the zero’'th part of an Q-spectrum tHH(F). This is true even equivariantly, with
respect to the group action of any finite cyclic group induced from the cyclic
structure. We use the theory of equivariant I'-spaces to construct the deloopings. In
particular, we obtain deloopings of the fixed sets TH H (F)°"; and this is what we are
really after.

Let I'§? be the category of finite based G-sets. We use the model where the
objects are pairs ([n], p), with [n] = {0, ..., n} and p is an action of G on [n]
which keeps 0 fixed. Following Segal (unpublished) and Shimakawa [Sh], a special
G-equivariant I'-space (or I'g-space) is a functor T from I'¢? to G-spaces with the
property that T ([0]) is G-contractible, and such that for each object 4 = ([n], p),
the natural map,

(4.1) P4 Tg(A) — Mapo (4, Te([11)) ,

is a G-homotopy equivalence. In (4.1) P4(¢)(a) = P,{t) and P,: [1] — A is the based
G-map with P,(1) = a.

For G = C,, the cyclic group of order r we will show that the r-fold subdivision
|sd, THH,(F)| is an equivariant I'-space.

The basis of the construction is a certain map

§: EX, x THH (F,) - THH(F})

where F, = M, (F) is the (k x k)}-matrix FSP associated with F.

Since the actual construction is rather technical, we first outline the main steps.
The sum operation is produced by wedge F, x F, - F, ., corresponding to direct
sum of matrices. It is not strictly commutative, but as usual it is commutative up to
a permutation. The fact that this permutation is “irrelevant” is expressed by the
existence of this 8, satisfying certain relations made precise in (4.4). We have to
show that we can construct an equivariant I'-space from these data.

We first rewrite Segals construction of categories with sum diagrams in a form
which is uglier than his, but convenient for writing explicit formulas. This gives us
an equivariant version of the Eilenberg-Maclane spectrum HZ. The components of
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this I'-space are contractible, but carry free actions of various symmetric groups.
The point of this is that these components of E(k) can act as operations on spaces
like THH(F}), using the map 6.

A I'-space is a functor from the opposite of the category of finite, based sets. The
functor which is going to give THH an equivariant I'-space structure is first defined
on objects. We take its values to be disjoint unions of products. One of the factors is
a component of the simple I'-space we just defined, and the other is of the form
THH ([ ] Fi,)- The main problem is to define the value of the functor on morphisms
in such a way that we obtain a functor. For instance, given an equivariant, pointed
map ¢: k — [, we have to produce maps

E(k )@, sy X THH (Fy, x. . . x Fy).

__________

After taking the union over all components of E(k), this is to be a map over the
already given map E (k) — E(l). In a certain sense, this says that E acts on THH.
The functoriality means, among other things, that if ¢ is invariant under some
permutation of its source, this map is also invariant under the same permutation.
The wedge sum defines maps

THH(F, xF,,x...xF,)—> THH(F,, x...xFy)

which do not have this property. Composing with 8 we obtain a space of such
maps, that is a map

F(p, )X THH(F, x Fy,x...xFg)—> THH(Fy, x...xFy)

for some suitable space F. The permutations of the source of ¢ acts on F, so that at
least this map is invariant with respect to the diagonal action. The main problem
left is book keeping. We do this by specifying maps E (k) - F(¢), and declare that
the action of E on THH is via these maps.

Now we have to make this outline precise. We work simplicially (with cyclic
sets). For each group X, E,X is the cyclic set with

E>=23r"!
0o, ..., 0,)=(00, ..., 05, ...,0)
silog, ..., 0,)=1(00,...,0i,0i,...,0,)
4.2) t(0o, ..., 0p) = (04 00,...,0,-1).

It is contractible and so is each of its fixed set (E,2 )" Indeed,
(43) (B2 3 | (sd, E2)7| = |E.E] .

Hence |E, 2| with its induced C,-action is a model for the equivariant E. X, and its
quotient (by the diagonal C,-action) is model for the C,-equivariant classifying
space Bc.(2).

The symmetric group X, acts on F, = M, (F) by conjugation, hence on
THH,(F}), and there is a simplicial map

6.: E.Z, x THH.(F,) —» THH.(F))
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with the following properties:

B.(g1eg2,t) = g3 '0.e, g1 '1g1)9,
(4.4) B.(er, Bulez, 1)) = Ole e, 1) .

Here and below the product of two simplicial spaces means (without further
indication in notatlon) the dlagonal simplicial space. The multlphcatlon m
(E,2) = s component wise and the right and left action of X, on Z&
multiplication on each factor Z,. The map 6, is defined as follows: Let
(60, ...,0,)eE, 2, and let

f Sio Ao A Sip"'*Fk(Sio) N LA Fk(Sip)
represent an element of THH ,(F),). Then
(45) 0)7(0-0’ LR ] apa )(u) = (a;lfo(u)O-Oa 561.f1(”)01> LEEEE Y Gl;—llfp(u)ap)

Let Ny denote the non-negative integers and write Po[n] for the subsets of [n]
which contain 0, the basepoint. The set of functions

k: Po[n] > Ny
which are additive,
k(SOT)=k(S)+ k(T)if SN T = {0},

will be denoted Hom(P,[n], Ny). A G-action on [n] implies a G-action on
Hom(Py[n], Ny), and a based G-map ¢: [m] — [n] induces a G-map

¢s: Hom(Po[m], No) — Hom(Py[n], No)
by the rule
ds(k)(S) = k(#*(5))
where ¢*(S) = ¢ 1(S — {0}) L {0}.

We shall use 0, to exhibit an equivariant I'-structure on THH (F) for each finite
cyclic group C. But first let us recall the general method for constructing I'-spaces.
To each ke Hom(Py[n], Ny) one associates a space X (k), and to each morphism ¢:
[m] — [n] amap ¢,: X(k )—» X{g4(k)) such that (¢¥),. = ¢, .. The n’th space in
the associated I'-structure is then

X, = [[{X(k)|ke Hom(P,[n], No)}

In the equivariant situation one has pairs 4 = ([n], p) where p is a C-action on [n]
inducing a C-action k+ k? on Hom(P,[n], Ny), and one further needs maps from
X (k) to X (k%) to define a C-action on

X,=]]{Xk)|keHom(Po[n], No)}

Let us first consider (non-equivariantly) a I'-space which only involves permu-
tation groups and whose underlying infinite loop space is homotopy equivalent to
the integers. For two based sets of equal cardinality, let 2(S,, S,) denote the set of
based bijections. It generates a contractible cyclic set (cf. (4.2)) with

Ep(Sla Sz) = Z(Sb Sz)p+1 .
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Given based ordered sets S and 7 we write S | [ 7for the based concatenation of
S and T; it starts with the elements of S and then lists the elements of 7" = T — {0}.
We are going to identify totally ordered sets of equal cardinality. In particular
(k1111 = [k + [] and the bijection [k][ ] [/1— [!1]] [k] induces the permuta-
tion of [k + !] which fixes 0 and has g(i) =l + iforO< i< kand o(i) =i — k for
k<igk+1

Consider an additive function k: Po[m] - N, as above, and let us write
k; = k{0, i}. A subset Se P,[m] has an ordering induced from the standard order-

ing of [m] = {0, 1, ..., m}, so we have an induced identification
L [k = [k(S)] -
ieS

We define the subspace

(4.6) E([ml k)= ][] E. (]_[ [kl [k(S)]>
SePo[m] ieS

by the condition that x = (xg) belongs to E,([m]; k) if

(*) xs =1 when card(S;) =1, Sy = {ie S|k %+ 0} .

We make E.([*], k) a functor on I'°? as follows. Let ¢: [m] — [n] be a mor-
phism in I'°? with ¢,(k)=1 Then [;=ZX{klie¢ !(j)} for j>0. For
xe E,([m], k) and Te Py[n] we have elements

x¢‘{T}EE.< ]_[ [ki]’l(T)>
ied™(T)
4.7 ;
“7) Xgt10, 5 € Ee ( I [kl [lj]>, j>0
ie¢’(0, j}
where the orderings of ¢*(T") and ¢*{0,j} both are induced from [m]. Let
e Eo(lky ) The D X EALNL D, [ D) = Eo(Tka JTT 0 D D23 LT LD

be the obvious sum of permutations. We form

#((x¢{01} jET JEE, <H[l ]>]__[ ]_I [k]>

JjeT jeT  ieco® {0, j}
We can identify the indexing set of pairs
(b DeTx¢XT), ¢(i)=

with ¢*(T) via projection onto the second factor. This gives rise to a bijection

0'¢,T5]_[ LI (k] - H (k]

JjeT ie¢™(0, j} ie¢*(T)
or in other words, a permutation of [[(T)]. We define

(4.8) E(9)(X)r = X1y ° 0, 7 ° (X0, jy)jer)
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and note that E,(¢)(x) satisfies (*) above when x does, so that

E.(@): E.([m], k) - E.([n], ¢« (K)) .

We must still check that E() E(¢) = E(i ° ¢) when y: [n] - [r] is a further
morphism in I" °?. We leave the verification to the reader, but notice that it uses the
commutative diagram (where U e P,[r]):

N O IV R | I I O

vel uew’{o,v} i€¢™{0, u} veU ied™y* (0, v}
l .U l Tys.v
O 1 kd — ] [kl
peFUy 10, 1 iep Yt (U)

We can now define a ™-space by letting X (k) be the geometric realization of
E.([m], k), Le.

E, = [[{IE.([n]; k)|:ke Hom(Py [n], No)}

This is precisely the classifying space of G. Segal’s category of sum diagrams,
[Se]; its associated spectrum is just the Eilenberg-Maclane spectrum HZ. Let C be
a finite cyclic group. Then there is a C-equivariant version of the above construc-
tion upon making use of the fact that E, ([m], k) is a cyclic set so that its subdivision
sdic; E.([m], k) is a simplicial C-set. More precisely, suppose 4 = ([m], p) with p:
C — Auty([m]) and let x = (xg) with

xs€sd E. (H [kil, [k(S )]>, SePo[m].
ieS

For geC and k: Po[m] —» Ny, let k% Py[m] — Ng be k(S) = k(g™ 'S), so that
kf = k,-1;. Then

xg‘ 15 eSd|C| E- <]__[ [k?:la ]_cg(S)>
ieS
and we have
g sdic| E.([m], k) — sd\c|E.([m], k)
by setting g,(x) = y with ys = gx,-:5. We can then form the I'c-space,
Ec(A) =] {IsdiciE.([m], k)|: A = ([m], p), ke Hom(4, No)} .

Its corresponding spectrum is the Filenberg-MacLane spectrum HZ with
trivial C-action. In order to get more complicated I" (and I'¢c-spaces) we involve
THH, and the map 8, from (4.5). Let k: Po[m] — N, be an additive function, and
F a functor with smash product. We define

m m
’_‘=H ki> E:].__[
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The simplicial map 6, extends to a simplicial map
0.: E.2,x THH,(F,) » THH.(F,)

upon using the old 6, on each of the coordinates, and we still have the relations (4.4)
satisfied.
Given ¢: [m] — [n] there is a cyclic map

(4.10) THH(¢): THH.(F,) > THH.(Fyrg,) -
Indeed, if | = ¢y(k) then [; =Y., k.

e~ 1(j)

The ordering of ¢ ~1(j) as a subset of [m] and the wedge sum
w FaXFb—)Fa-*b

defines a map from []5_, [].,70.; Fi to F. Finally we have a projection from
Fy onto [T4_, Tlicsr0.5 Frr @and we can apply the functor THH to get THH(¢).
Similarly, using the sum (concatenation) map from Z, x X, to 2, there is a cyclic
map

4.11) W) E.Z,—» EZ, .

We must examine functoriality. In the special case where ¢: [m] — [n] and
y: [n] — [r] are order preserving, then it is easily seen that

THH())° THH(¢) = THH(} © $)
(4.12) w)o u(@) = u(yo @) .

Moreover, for order preserving ¢, 8, is functorial in the sense that we have
a commutative diagram

E.5x THH.(F,) —2 THH.(F,)
(4.13) lu(¢)x THH(¢) | THH(¢)
E.Zx THH.(F) —2 THH.(F).

In order to handle more general set maps we introduce the cyclic set
Fu¢, k)< [1 E( [k, [l,-]), 1= ¢u(k),
j=1 ie™0, /}
defined by the condition
(%) fi=0ifcard {i| () =j, ki =0} =1.
Here ¢: [m] — [n] is arbitrary. There is a natural map of cyclic sets
A(@, k) E.([m], k) > F.(¢, k)

defined by projection onto the relevant components.
As for functoriality, if ¢ and i are composable there is a product map induced
by composition

Ur: F-(W, d)#(k)) X Fo(¢’ I_() e F,(l//¢, I_C) .
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To be precise, if [ = ¢4(k), p = W4(I) then the component h, is defined to make

the following diagram commutative

I k] —2—  [p]

ie($)"{0.v}

T Cp.6"0.0 T N

k 1y, I

I O kl—— [ [4]
jew*to.v) ied*(0, j} Jjew 0. v}

It is direct from the definitions involved that the following diagram is commutative

E(ml k) 22 E(mn] )X Fué, k)

(4.14) LEwe. v LEw. 2id)

E([r], p) x Fo§rp, k) —22Ls E([r], p) % Fu(, 1) % Fu(h, ).

We haVC Hiap’(o,j} [kl] = [l,] SO that
E( [ [kl [l,-]) = EJ([L1. L)) = E.2,,
ie¢*(0, j}
and there is a corresponding cyclic map
¢l: F0(¢)9 l_() - E'ZL
which is equivariant with respect to the right action over
pi(P): 2y — 2y
(compare (4.11): u(¢) = E.(u,(¢)). We can now define the cyclic map

(¢1, THH({)) o)
B ——

(4.15)  n(¢): F.(¢, k)x THH,(Fy) E,2;x THH,(F)) : THH,(F})

where 6,(1) = (0.(1,), . . ., 6.(1,)), and 0,(l;) is the map from (4.5). It follows from
(4.4) that n(¢) has the following equivariance property

(4.16) ()91 192, 1) = g2 ' 7(D)(x, 91 ' 191)92

for g, €Z), g, € £, and where the action of g, on the right hand side of (4.15) is via
(@) 2y — 2.
We finally let

X(¢): E([m], k) x THH,(Fy) » E.([n], ) x THH.(F})
be the cyclic map defined by
X(d)(e, t) = (E(@)(e), n(d)(A(¢, k) (e), 1)
Lemma 4.17 For based maps ¢: [m] - [n], ¥: [a] = [r], X (W @) = X () ° X ().

Proof. We have already showed that E( ¢ ¢) = E(y)° E(¢) so we have left to
examine the functoriality of 7(¢).
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Let I = ¢4(k), p = ¥ »(I). Assuming first that ¢ and y are order preserving. We
can then combine (4.13), applied to i, with the diagram

E.Z,xE.X xTHH(F)————»EZxTHH( »)

l(ld,e (») 106p)
E.Z,x THH.(F,)  —2 THH.(F,)

which is commutative by the second formula in (4.4), to show that

F.(0, 1) % Fu(dh, k) x THH.(F) ~2 FL(y, k) x THH.(F,)
(4.18) 1 Gd, n(¢)) 1 =tye)
F.. )X THH.(F) ~ —%~  THH.(F,)

is commutative.

We claim that (4.18) commutes for all based set maps. Since a set map is the
composition of an order preserving map and a permutation (of the non-zero
elements) there is really only two cases to consider, namely the cases where either
¢ or  is a based permutation. Then F (¢, k) or F(y, [) is a one-point space, and the
commutativity of (4.18) follows from the equivariance property (4.16). Indeed, if i is
a permutation then the two maps around in (4.18) are

(e,t) > n(@) ey, 1), (e,t) >y "m(e)(e )Y
and if ¢ is a permutation the two compositions are
(e,t) > m(de, 1), (e,t) > nle, ¢~ 't4)
In either case the two compositions are identical by (4.16). [

We can define the wanted equivariant I'-space structure on THH(F). Let
C be a cyclic group of order r, A =([m],p) with p: C — Auty([m]), and
¢: ([m], p) = ([n], p) 2 morphism in I'¢?. We define

TcF(A) =[] {Isd,(E.([m], k) x THH.(F\))|: ke Hom(Po[m], No)} ,
(4.19) TcF(¢) = [sdc X ()] -

Here the C-action on TcF(A)is the conjugation action when we view (4.19) as
the space of mappings with domain Hom(P,[#], N,) (with its C-action induced
from p) and the range as the C-space induced from the simplicial C-action on the
subdivision. It is clear from (4.17) that we have defined a functor

Tc(F): I'& — {C — spaces} .
We have left to prove that T¢F is a special I'¢c-space, i.c. that it satisfies (4.1).

Proposition 4.20 For any two functors with smash product, the product of projections
define a C-equivariant homotopy equivalence

|¢.):|sd, THH (F'x F")| - |sd, THH.(F')| x |sd, THH.(F ")/ .
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Proof. A map between equivariant CW-complexes is an equivariant homotopy
equivalence if it induces ordinary homotopy equivalences on all fixed sets, [A, Sect.
27. It thus suffices to show that

|¢o]:|sd, THH.(F' x F")*"| - |sd, THH ,(F")*"| x |sd, THH ,(F ")*"|

is a homotopy equivalence.

The domain and range for |¢.| are H-spaces, hence simple, so we can check on
integral homology whether |¢.| is a homotopy equivalence or not. Moreover, for
each simplicial space the skeleton filtration of | X, | defines a spectral sequence with
abutment H,(| X.|) and with E} , = H,(X ).

Given any FSP, define a simplicial group H[(F). by

[p1r Hy(sd, THH,(F)™) .
We show the projections define a homotopy equivalence of simplicial groups
Hy(p)e: Hy(F' xF"), > Hyj(F').x Hy(F"),

This in turn will imply that the |¢,| induces an isomorphism on the E'-term of the
spectral sequences, and hence is an integral homology isomorphism.

There are (not unit preserving) inclusions y;: F® — F'x F" of FSP's, giving
simplicial maps Hj(y;). for i = 1, 2. We consider the sum

Yo=Hi(1). + Hi(¢2). .

One composition is the identity, Hy(¢). <. = id. We shall construct a simplicial
homotopy between the identity and the other composition.

K: A[1], x H,(sd, THH.(F' x F")°*) > H (sd, THH.(F' x F")¢") .

A p-simplex of A[1], is a weakly increasing map a: [ p] — [1], so is determined by -
the number k for which o(k — 1) = 0 and o(k) = 1. Let F = F' x F” and consider

f1 SR 5 F(S)0 A . . A F(S')7,

representing an element of sd, THH (F).
Suppose first r = 1. Write n, ; and =, , for the following compositions where
v=()or (")

F(S©) A ... AF(S)—> FOS©) A ... A FO(S* ) A F(S*) A ... A F(S™)
= F(S®)A...AF(S%7).

Here the first map is projection onto F™(S%), 0 <t < k — 1, and the second is
induced from the inclusion of F™ into F = F'x F".
Assigning (n,, | °f, 7, 2 °f) to finduces two maps

A[1],x Hy(THH (F)) » H,(THH (F))

which we can add to get K,. In the special case where (i) = 0 for all i, we let
K,=id. If ¢(i) = 1 for all i then K, = > H;(¢,). One can easily check that K, is
a simplicial map, thus defines the required simplicial homotopy.

Finally, if r > 1, we use n¢; and n’, to get equivariant maps, and define
K" using the sum of these two maps to obtain the required homotopy. [
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Remark 4.21 The above map K, can be defined directly on the space level,
A[1],xsd, THH,(F)" — sd, THH ,(F )" .

However, this will not be a simplicial map; one will only have the simplicial
identities satisfied up to homotopy. This is the reason that we apply the integral
homology functor.

Corollary 4.22 The functor T¢ F defined in (4.19) is a special I g-space.

In [Sh], Shimakawa constructs to each special I'g-space T¢ a G-equivariant
spectrum BT7. It is an “almost” G — Q spectrum in the sense that the structure
maps

SW AN lBVTG—‘)]Bw@VTG

adjoin to become G-homotopy equivalences for each pair of RG-modules with
V¢ + 0. In particular, V> QBy gr T is a G — Q spectrum. Moreover, the natural
map (adjoined to the inclusion of T([1]) in the 1-skeleton)

T6([1]) - QBRrT;

is an equivariant group completion.

Recall the terminology that a G-infinite loop space is the zero’th space in
a G — Q spectrum, and that a G-infinite loop map is the zero’th level of map
between G — £ spectra.

The above applies to the I'¢-space T¢F defined in (4.19).

Proposition 4.23 For each finite cyclic group C and each functor with smash product
THH (F}is a C-infinite loop space in such a way that the product H(ZYx THH(F)is
the C-infinite loop space associated with the I'c-space of (4.19).

Proof. Since the cyclic space | EX, (k)] is equivariantly contractible and since THH
1s a Morita-invariant by (3.9),

|sd(EZ.(k) x THH.(Fy))| ~c,|sd, THH.(F)| .
The resulting map
ToF([1])> Z x THH(F),

which maps the k’th term into {k} x THH (F), is an equivariant group completion.
We have left to see that Z, with its standard infinite loop space structure arising
from the C-trivial Eilenberg-Maclane spectrum, splits off. To this end we can
project T¢F to the I'c-space E. given by

[n] - []Isd,EX.(k)], keHom(Ps[n], No)

and observe that the projection is split (as I'¢-spaces) by the inclusion of the base
point in THH (F,) (FSP's take value in pointed spaces).

Since |sd,EX,(k)| is C-contractible, the equivariant ['-space E. is homotopy
equivalent to

([n], p) » Hom(Py [}, No} .

The spectrum of E¢ is the Eilenberg-Maclane spectrum H(Z), with trivial action
of C. O
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In (4.19) one may replace THH,(F,) with the (diagonal of the) bi-simplicial
space X, ,(r) from the proof of Proposition 3.9, and one gets

Corollary 4.24 Morita-invariance is a C-infinite loop map
|THH.(F)| ~c|THH,(M(F))| .

For the FSP of Example 3.2(i), [, the C-equivariant homotopy type of THH(I")
was determined in (3.7). Since Qc(1) is the universal C-equivariant infinite loop
space generated by A we have a C-infinite loop map

Q(ABT) —» THH(I)

which is seen to be a C-homotopy equivalence of C-infinite loop spaces. Thus we
also have for each k,

THH(M (L)) ~cQc(ABI') .

The maps constructed above for the cyclic groups of order p" fit together for
varying n, essentially by 3.14, to give the following conclusion which is what we will
use in the paragraphs below.

Proposition 4.25 There is a stable homotopy equivalence

holim | sd,» THH.(M(I'))| = holim Qc, (ABI')*

n

with the limit varying over the integers.

There is an analogue of (4.25) where we vary over all ¢yclic groups C, and take
limits over r ordered by division.

5 The cyclotomic trace

For a ring R, consider the following string of maps
INJ(GL,(R))|—— NI (GL,(R))| —— [N .(M,(R))| = I[N .(R)|

with the notations of Sect. 2 and Sect. 3. The first map is from (2.4), the second
embeds GL,(R)* = M,(R)®¥, and the third is Morita-invariance. After suitable
stabilization one gets a map

Tr: BGL(R)* - |Ng .(R)|

which on homotopy groups induces the trace map, due to K. Dennis, from
algebraic K-theory of R to Hochschild homology of R, cf. [W2].
It follows from (2.12) that Dennis’ trace map lifts to a map

(5.1) BGL(R)* — holim |sd,.N§ .(R)"|® .

We generalize in this section the above to the ‘rings up to homotopy’ associated
with FSP’s. The range in this situation becomes the (fixed set) of the topological
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Hochschild spectrum. The domain K (F) is essentially Waldhausen’s generalization
of algebraic K-theory.

More precisely, let F be any FSP. Its ring up to homotopy was defined in (3.3),
and its homotopy units, denoted (QF )™ or GL,(F), is the limit of maps fe Q"F(S")
for which there exists ge Q™F(S™) with

s" A S" L0 F(ST) A F(S™)—Ls F(S™ A S™)
homotopic to lgn.+m, i.c. the union of the invertible components in QF. More
generally, let
(5.2) GL(F) = (QM(F))™ .
Observe for the FSP I" of Example 3.2 associated with a monoid I" that
GL(I)= ho}iigH(S" AT :li_m)H(S" ATL)),
the limit of the monoid of homotopy equivalences of " A ..

In general, GL,(F) is an associative monoid with classifying space BGL,(F).
The wedge multiplication of 3.2 (ii)

(5.3) % GLy(F) x GL,(F) - GL, ,,(F)

induces a topological monoid ][, BGL(F). Its group-completion defines the
algebraic K-theory of F:

Definition 5.4 [B] The algebraic K-theory space of F is the group-completion
K(F)XZ = QB(L[ BGLk(F)> .
k

Alternatively, as in the case of algebraic K-theory of rings,
K(F)XxZ ~BGL,(F)" xZ,
Quillen’s plus construction on BGL (F) = holi_)m BGL(F).

The infinite loop space structure on K(F) can be specified via a I'-structure
similar to the one defined on THH(F) in the previous section. Indeed, 2, acts on
GL,(F) by conjugation and there is a simplicial map

(5.5) 0.: E.2; x N (GL,(F))— N, (GL(F))
given by

0.(00, - . > 0p; L1l - 1g,]) = [00 ' 9101101 ' 9202]. . .1o,219,0,] -
This has the equivariance property (4.4), and we can define the I'-space
(5.6) K[m] = [T {|E.([m], k) x N.(GL(F))I: ke Hom(Po[m], No)}

where GL,(F) = GL,,(F)x. ..xGL,,(F), and k; is the value of k on {0, i}. The
group completion of K[1] is homotopy equivalent to K(F) in (5.4).
We similarly define an infinite loop structure on

G.7 K?(F)=QB <I_[ |ny(GLk(F))|> :
k
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Indeed the construction of (4.4) also gives a X -invariant map
6.: (E.(2) x NP(GL4(F))) = NP (GLi(F))
and hence as in Sect. 4 a I'¢ -structure on

(5.8) Ne(r) = || |sd,(E.(Z,) x N (GLi(F)))| -

k

The maps D and ¢, = 4, ! introduced in Sect. 1 and Sect. 2 give I'-maps from
N¥(p")» to N (p"~ 1)’ hence a I'-structure on Cholim N© (p")*»1*®» and this
exhibits an infinite loop space structure on

[hO(l_i_l’E Kcy(F)Cpn]hd)p .
The map from (2.13) induces an infinite loop map
Pp

(5.9 I K(F)—> <holi_13 K (F )Cv">
cf. (1.11), (2.13).

Consider the simplicial map

S.: NY(GL(F))— THH.(M,(F))

which sends a p-simplex (fo, . . . , f,) with fie holi_rr_l Q"M (F)(S"}* into the smash

productfy A ... A f,. By definition, ©,(id, x S,) = S.0.,s50 S = |8, ] induces a map
of equivariant I'-structures, hence a C,—infinite loop map

K“(F)—-»THH(F)}xZ .
We next define a map ¢, which makes the diagram below commute
|5d - NOGL(F)) [P~ —— |sdyn-: THH.(F,)|S

(5.10) 14, 1o,

15w NP GLF))r  —>—s  |sd . THH.(F)|" .
The outcome is then an infinite loop map

. : ¢ Con1h® : Co YD,
(5.11) S: [holim K (F)*] —*(hO(l_l_nl THH(F)»y®» xZ .
To define @, let R = RC,», R = RC-: be the regular representations of C,»and

C,- 1 respectively, so that R = R, when we identify Cpn-1 = C,/C,. Consider the
map

Fix,: Mapc,(S™F A ... A S%5 F(S®)7 A ... A F(S™)®) >
Mape, (SR A ... A SHE F(S©)P"™D A A F(SH) )
which takes f to the induced map f€» on C, fixed sets. It induces a simplicial map
®,..: sdpnTHH (F )7 = sd -+ THH,(F )

whose realization is the map ¢, which makes (5.10) commutative. It is easy to see,
and left for the reader that D@, = @,D.
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Definition 5.12 (i) Let F be any FSP. Define its cyclotomic trace functor at p to be
— : CpnhDp
TC(F,p)—[hoEETHH(F) ]

with the infinite loop space structure from above.
(i) The cyclotomic trace at p is the infinite loop map Trc = proje Se |,

Trc: K(F)— TC(F, p)
with [ from (5.9), S from (5.11) and proj the projection away from Z (cf. 4.13).

We could in all the above have taken homotopy inverse limits over all natural
numbers rather than just the powers of a single prime p to get a functor TC(F).
This functor however would not really be stronger than the products of the
TC(F, p). In particular for the profinite completions one would have the equiva-
lence

TC(F)" ~ H TC(F,p)" .
Let
B: TC(F,p)— THH(F)

be the map induced by projecting the homotopy inverse limit to its zero’th term.
The composition f o Trcis (for any p) the topological Dennis trace map considered
in [B].

Remark 5.13 T. Goodwillie has pointed out to us that it is sometimes advisable to
interchange the role of @ and D in the definition of TC(F, p), i.e. that there is
a homotopy equivalence

hD
~ : Cpr
TC(F,p)_[ho}l_mTHH(F) :I .

(]

This amounts in our case to the fact that for a double string &, D: S, 3 S, {,n =20

ho hD
(ho]im S,,) ~ <holim S ) .
— — 1

D 4

To see this one can replace (S, @, D) with a double string (f(S,.),f (), f(D)) where
the maps are fibrations. For example, f(Sy) = S, and f(S;) is the subset of
S, x SEx S of points (x,, 5, 1) with &(x;) = ¢(0) and D(x,) = 7(0) Then use that
the double homotopy fibre can be calculated in two ways in the diagram

ars,) 2225 nys,)

broy-1 lroy—1
nres,) 2255 s,

We shall now calculate (the completion of) the functor TC(F; p) when F = I, the
FSP associated with a group-like monoid. We have

THH.(I )~ Qc,(ABI' )G
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and using the proof of (2.6} it is easy to see that ¢, is homotopic to the composition.
,: Qc (ABI )" = Qc,, (ABI 7)o & Q. (ABI)or.

Here the first map takes £ S¥ — S” A ABI . into its induced map f“» on C,, fixed
sets, and the second map is induced from the power map

A, ABI' S ABI e, A fo)(z) = o{z") .

We have left to determine the homotopy fibre of
P, — 1: ho‘l_i_r_n_ Qc,(ABI')"" — ho@_ Qc, (ABI)r
where the homotopy limit is over the inclusions of fixed sets.
Consider for m < n the covering space
ECynxc, AX - ECpnxc, AX
of order p"~™. The associated stable transfer maps are denoted

£ QUEC pn %, AX ) = Q(EC pmxc, AX) .

Then ¢ ~ %, 10 ...°t! ! and we form the homotopy inverse limit
(5.14) C(X,p)= holi_nz Q(ECynxc, AX) .

Lemma 5.15 For a space X with AX of finite type, the completions
C(X, p)p = QX4 (ES* x5 X))
are homotopy equivalent (Q = Q*§%)
Proof. Let Y = AX. The S!-transfer defines a map
7 O(E,(ES! xg: Y)} > holim Q(EC,- X, Y)

which we must show becomes an equivalence after p-adic completion.

It can be assumed that Y is a free S CW-complex, by replacing Y by ¥ x ES?,
and we can induct over the S'-skeleton. The induction starts with ¥ = §* x Z with

Z a finite set of points, which is a trivial case to check. The inductive step is to show
that

T O(Z(ESL AgiSL A Z))—»ho(li_rn_Q~(ESI+ Ae,SL A Z)).

becomes a p-adic equivalence. We divide out the action, and 7 becomes a map from
Q(22) to hoE_rEQ(Si/Cpn A Z). We decompose

QS /Cpn A Z) = Q(SH/Cpu A Z)x Q(Z),
and use that the homotopy inverse limit of

~ 14

0(Z)

0Z)—2—0(Z)e—2—. ..
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is p-adically trivial to conclude that

holim O(SL/Cpu A NZ)) =~ holim Q(SY/Cp A Z)} .

Finally, the diagram
0(ZZ) —s Q(SY/Cpres A Z)
lid !
0(Z) —=— ((S'/Cpn A Z)

is homotopy commutative, and each 7, is a homotopy equivalence. Hence
£ Q(ZZ)—;»ho(li_mQ(Sl/Cpn AZ). O

We thank T. Goodwillie and R. Cohen for help with the argument above.
Lemma 5.15 applies to spaces X with finite fundamental group and with
H,(X; Z) finitely generated in each degree. It does not in general apply when 7; X
is infinite.
The simplest such case, X = S! is illuminating and will now be discussed in
some detail. We have the S'-homotopy equivalence

ASt > [[ St .
neZ

Here S'(n) = S} (C®") and C has the standard S!-structure. Then

5 (ES x51 AS) = \/ ZL(ES' xg1 S'(m)
neZ
and ES! x5 S'(n) ~ BC, for n+ 0 (and equivalent to BS!xS! for n=0). It
follows that
O(2 . (ES" x5 4S")) = [] Q(2+BC,)x Q(2+(BS' x51))

n¥0

where [ | means the weak product of infinite loop spaces, corresponding to wedge
sum of suspension spectra. In particular the homotopy groups are sums.

We next attempt to calculate the homotopy groups (with IF, coefficients) of
C(S%; p). Let n = p'k with (k, p) = 1. Then

BC,ix S'(k)/Cpm-iy, mZi

EC”MXC””SI("):{BC x St(n) m<i
pm 'y .

The transfer

tn 't Q(ECpmxc, 8 () > Q(ECym-1 Xc,...S ()

pmei

can correspondingly be calculated to be

gm-1 _ idy A Ty, m>i
m - . .
et aidy, m<i

with T;: Q(S!) — Q(S') the transfer associated to the covering ¢+ t? of S?, and
Tn~t: Q(BCpm) = Q(BCpm-1) the transfer of the covering BCpm-1— BCpm.
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Let HP*( ;IF,) denote the spectrum homology with IF, coefficients,
HYQX;Fy) = Ho (X, TFy) .
It is a standard fact that the induced maps
(T3 )yt Hy(BCpo; Fp) = Hy(BCpm-15 FF )
(T1)st Hy (S Fp) = Hy(SY TF))

are isomorphisms in odd dimensions and zero in even dimensions. Suppose i > 0.
Then

H,(ECpnxc,S'(n); F,)) =F,®F,forr>1.

The first summand F, is H,(BC,m; [F,)® Ho(S'; F,) when m<i (and
H,(BC,;F,)® Ho(S';[F,) when m=i) The second summand is
H,_{(BC,m;F,)@ H(S'(n); F,) for m<i (and H,-,(BC,; F)® H,(S*;F,)
when m 2 i). It follows that (t7 '), in dimension r can be tabulated as

01l for m>i
(1), ={0®1 for m<i r even
190 for m=£i, r odd

We can now calculate (for fixed k) that

IF,[t], r even

lim 3® H(ECxe S'(pik)TF,)=
im £ BEC e, 50 = T T

m 1

i.e. an infinite sum of IF,’s when r is even and an infinite product of IF,’s when r is
odd. Indeed for even r, the inverse system is constant equal to IF,[t] whereas for
odd r it is the system IF,[¢]/{t™ ) with limit IF,[[¢]].

When r < 2p — 3, the Hurewicz map

. (QX; IF,) » HP(QX; )
is an isomorphism, so for each (k, p) = 1,
. © : F,[t], r even
. 1 (7AW n: — p
lim 7,0 <ECP Xen V SHPR P) {]Fp[[z]], r odd

m

in the same range. For odd r less than 2p — 3, =, (C(S%; p); [F,) is therefore not
countable and hence we see that

m(C(S*, p) F,) & m,(QZ + (ES' x5 AST) F)) .
The p-completion preserves (co)fibrations of spectra by [BK, p. 62] so
(X AS°p)y ~X, AS%p
and hence by [BK, p. 183]
e (X, 3 Fp) = ExX(Z/p *; my(X; IF )
@ Hom(Z/p*; m,(X; )
= (X, F,) .

In conclusion, (5.15) is false for X = S*.



500 M. Bokstedt et al.

B
Let C(X, p)— Q(AX) be the projection onto the first factor in the inverse
system, or after the identification in Lemma 5.15, the S !-transfer. Consider also the
map

1— 4, Q(AX) - Q(AX)
where 4, is the p’th power map.

Definition 5.16 Let TC(X, p) be the homotopy inverse limit of B and 1 — 4, such
that there is a homotopy Cartesian diagram

TC(X,p) —— C(X,p)
e %
Q(AX) — Q(AX).

Theorem 5.17 For every group-like monoid, TC([, p) ~ TC (BT, p).
Proof. Let us write X = BI'. There is a well-known decomposition of Q¢ (AX \Cor
(%) Qc (AX )7 = [] QECpn- ¢, AX)

i=0

basically due to [tD]. We recall the proof of (*).
Consider the cofibration

(ECpn), = S° = Z(EC,n) .

We take smash product with 41X , and obtain a homotopy fibration of fixed point
sets

Qc, (ECpox AX )7 — Q¢ (AX )7 = Gc (AX . A TEC,)7 .
Now, f— f ¢ induces a homotopy equivalence
Oc, (AX ¢ A ZECp)or = Qc _ (AX Cr)Cr

where C,.-: = C,»/C,. This is clear from equivariant obstruction theory. Also, the
equivariant transfer induces a homotopy equivalence

Q(EC, xCP"AX)_i., Qc, (ECpn x AX Yo
cf. [A, Theorem 5.3]. Hence we obtain a homotopy fibration
(%) Q(EC; % Cpm AX)——aL—-> QCP"(AX)CP"L; Qcpn.,(AX Cp)C,,n,, .

The mapping b, is split by the inclusion
Ba: Qe .(AX SP)Cr=r > Q¢ (AX )P

which includes AX ¢ into AX, and views an RC .- 1-module as an RC.-module
via the projection Cpn — Cpn-1. Let

oy: Qc, (AX )7 > Q(EC,n %, AX)
be the induced splitting of a, in (*x), well-defined up to homotopy.
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Let ¢, = 4, '°b, and y, = B,° 4, so we have split fibrations
QECy xc, AX) 5 0c, (AX )" S Qc, (AX)"
with a,o, =~ 1 — @, Let d,: Q¢ (AX Vo — Oc,. (AX)» be the inclusion of
fixed sets. We have the relations (up to homotopy)
1 On = Ppyody, n>1
a,_1°tf Y ~d,ca, nx1
dpotfp = pyodyy, n>1
diey,~4,.
From this we easily see that
o, ~a,-y0d,, n>1
tPoo; ~dy — A0, .
The maps a, induce a homotopy class

o ho(li_rr_l Qc, (AX)" > C(X,p).

(Its p-completion is unique by (2.10)). There is a homotopy commutative diagram

TC(L, p) —— C(X, p)

Lo o L
Q(AX) — Q(AX)

which we must show to be homotopy Cartesian. We show that the homotopy fibres
ofxand I — 4, are homotopy equivalent via the map induced by §. It follows from
the proof of (*) above, that the maps

@, D: Qc,, (AX )"~ Qc,. (AX )

become homotopy equivalent to

D(Xo, - - - Xa) = (t9x1 + Ao, 13z, ... 127 1x,)
P(Xo, - s Xn) = (Xou - - s Xn1)

We use (5.13) and see from (5.18) that

(5.18)

hohm Qc, (AX)° H Q(ECpn xc, AX)

d)
with D given by

D(Xo, X1y« - ) = (t?xl + APXQ, tzl)C2, . ) .
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We thus have a diagram of homotopy fibrations (with Y, = Q(EC = x¢, 4X)),

hF(d,—1) — Y, 275 ¥,

! ! !

(5.19) TC(X, p) —— f‘o[ v, 225 ﬁ Y,
n=90 n=0
al ! !

CX,p) — [] Y, 2= [] ¥». O

n=1 n=1

Taken together Lemma 5.15 and Theorem 5.17 give a calculation of the p-adic
completion of TC ([, p) in terms of functors which have been extensively examined
in algebraic topology. It seems unlikely however that the completion

TC(L, p)—» TC(L,p)"

in general induces an injection on homotopy since there can be lim'-terms in the
homotopy groups of C(X, p).

We end the section with some remarks to clarify the relationship between the
range of the cyclotomic map and Connes’ cyclic homology, [Co, J].

Let I' be a discrete group. For the corresponding topological Hochschild
homology space THH(BI') = Q(ABI') we have

m(THH([)) ® Q = HHAQI'),
and similarly
T{Q(ES' x51 ABI')) ® Q = HC/QTI')

by [J]. Thus C(BI, p) and THH(BI) can be thought of as topological versions of
cyclic homology and Hochschild homology, respectively. One might wonder about
the topological analogue of Connes’ exact sequence.

Let A be the canonical line bundie over BS! and Ay its pull-back to ES* xg1 AX.
Consider the Thom spectrum Th(— Ay), defined as the direct limit of the spectra

Th("’ln,x) = Z_ZN(")Th(,un.X) .

Here 7, is the restriction of A to CP", A, @ u, is trivial of complex dimension N (n},
and p, x is the pull-back to S*"*! xg AX.

Proposition 5.20 There is a homotopy fibration
Q=X Th(=Ax) ~ 0F4 (ES' xg1 AX))) —— Q(AX)}

where Trf denotes the S'-transfer.

The argument for X = pt is given in [R ]; the general case is similar and left to
the reader. We note that the rational homotopy groups of Th(—Ax) can be
calculated as

1, Th(—Ax) ® Q@ = 74, (Q(ES ! x5: 41X )) @ Q
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by the Thom isomorphism for rational homology. In particular, the rational
homotopy groups of the fibration in Proposition 5.20 give the exact sequence of
Connes:

~ 5 - B -
> HCi (@, T)— HC,_ (@) —— HH{(Q,I') .. .
for every discrete group I

Note also from (5.15) and Theorem 5.17 the exact sequence
.. > mTC,(BT)® Q » HH,(Q,I) @ HC,_,(Q,') » HH(Q,I) —. ..

6 Assembly maps and Soulé’s embedding

A pairing of rings R; ® R, — R; gives a pairing of spectra
K(R{) A K(R;) - K(R3)

induced from tensor product of matrices. The inclusion of BGL,;(R;) into
]_[@0 BGL,(R;) induces a (based) map

BGL(Ry)+ — K(R;)

Let R; = RI' with R commutative. Then I' @ GL(RI'), and one gets a map
BI', —» BGL (RI'),. We can further take R, = R and use the product to get a map
of spectra (cf. [L])

w: BI', A K(R)— K(RI).
This is often called the assembly map.
Similarly, if u: F, A F, —> F5 is a pairing of FSP's we get an induced map
u: GL,(F 1) x GL,(F2) > GLp(F3)

It associates to feQ'Map([m],[m] A F,(S')) and geQ/Map([n], [n] A
F,(S7)) the composition

[m] A [n] A S A ST F (ST A Fa(ST)—2ms F5(S¥ A §9)

and induces
(6.1) #: No((GLw(F 1)) x No(GL,(F3)) = No(GLun(F3)) -
This leads to the pairing of spectra

K(F1) A K(F2) - K(F3).

There are completely analogous pairings for K“(F), THH(F) and TC(F, p).
Moreover the cyclotomic trace preserves the pairings up to homotopy. As for rings
we can restrict one factor to 1 x 1 matrices. This gives the homotopy commutative
diagram

BGL,(F). A K(F;) —=— K(Fs)
(62) l 1 A Trc lTrc

BGL,(F,)+ A TC(F,, p) —— TC(F3,p)
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where the bottom line uses the composition
BGL, (F,)—— holim (|sdy N(GL(F ))[r)r—— TC(Fy, p)

on the first factor (cf. (5.9), (5.11)), before applying the pairing for TC(—, p). If F is
a commutative FSP so that in addition to (3.1) the diagram

FX)AF(Y) —5— F(X A Y)
lr LEm)
F(Y) A F(X) —2 F(Y A X)

is commutative then y gives a pairing from F A F to F and we can take F; = F for
i=1,2,3 in (6.2). Another specialization which will be important to us is where
F1 =F3 and Fz = Id.

Let I be a topological group-like monoid and consider the FSP I from (3.2).
We write A(BI') instead of K(I') since (by defintion) K(I') is the version of
Waldhausen’s A-functor with oA = Z, cf. [B], [W2]. With this notation we can
specialize (6.2) to

BI,. A A(B[,) — A(B(I'yxTI5))
(63) ll/\Trc iTrc
BF1+ A TC(!Zsp) s TC(£1X£2,p).

In (6.2) and (6.3) the smash products are to be taken in the category of infinite loop
spaces (spectra), i.e.

X AE=1mQ"X A E,)
—
where E, is the n’th deloop of E.
The functor TC(I, p) was calculated in (5.15) and (5.17). The corresponding

calculation of the lower horizontal map in (6.3) is as follows. There is an obvious
pairing

BT (s A Q(EC,nxc, ABI;)— Q(ECmxc, BI'y x ABT;)
= Q(ECpn X, AB(I'y X I'3)) .

It commutes with the transfer map, so induces a pairing

pc: By A C(BI 3, p) - C(B(I'y x '), p)
compatible with the pairing

sa: By A Q(ABI ) — Q(AB(I'y x I',))
Since pyo(1 A 4,) = 4,0 uy there is an induced pairing

pre: Bl A TC(BI,, p)— TC(B(I'y xI',), p) .

As an addendum to the proof of (5.17) we have
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Lemma 6.4 The bottom map in (6.3) is homotopic to the map urc under the
identification in (5.17). O

We shall in particular make use of (6.3) (and (6.4)) in two special cases,
namely I'; = 1 where the horizontal maps are the assembly maps, and in the
case where I'y =T, =1 is a commutative group. In this situation we can
compose the diagram with the maps induced by multiplication to obtain
ur: BI'. A A(BI') > A(BI') and correspondingly when A(BI') is replaced by
TC(BT, p).

A transformation f F, — F, of FSP’s induces a map

fu K(FO)XZ > K(F)xZ .

For a group G and a subgroup I’ of finite index we also have a map in the other
direction

i* K(G)— K(I)

which we call ‘Restriction’ and sometimes denote Res or Resy. To define it, note
that the forgetful map

Mapg(G, G) - Map(G, G)
together with the identification
Map (G, G) = Map(G/I', G/I' xT')
(which depends on a choice of transversal G/I' = G to I') defines a map
i*: G>MJI'), k=1G:T|.
There is an induced map
i*: GL,(G) - GLu(I)
which defines
i*: A(BG)— A(BI') .

It is direct from the definitions to check the following lemma whose proof is left
to the reader.

Lemma 6.5 (Frobenius reciprocity) Let I' = G be a pair of groups with |G:I'| < 0.
Then the diagram below is homotopy commutative in the category of infinite loop
spaces

B) A id

BI', A A(BG) —_5 BG, A A(BG)
Lidai i
BI', A A(BT) A(BG)
Hr i*
A(BT) .

Similarly, i* induces a cyclic map

THH.(G)— THH.(M(I'))
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and in turn a map of r-fold subdivisions. Composing with Morita invariance,
Sect. 3, we get a C,-equivariant mapping

i¥:|sd, THH.(G)| - |sd, THH.(I')|
for each r, and D, i¥% = i¥ < D, with D from (1.12). In particular the i}. induces

i*: holim |sd,» THH.(G)|°* — holim |sd,. THH.(I')°"
— = — =

compatible with the operation of @, from (5.12), and hence
i* TC(G, p)— TC(I, p) .

The analogue of Lemma 6.5 is valid for TC( —, p) but we shall have no use of
this fact in the paper. More important for our purpose is the homotopy com-
mutative diagram of infinite loop maps

A(BG) ———  A(BI)
(66) lTrc " l Tre
TC(G, p) —— TC(I,p).

We shall often write Resg instead of i*.

Let us next define a map from Q(S* A CP ™), into A(x); which we shall call
Soulé’s embedding as it generalizes a construction from [S2]. Stable homotopy
classes of (S' A CP*); then give potential elements of 7, A(*)® Z,, but the
assignement need not be injective of course.

The usual norm maps

Norm: Z[Cpn]* = Z[Cpr-1]1"
give rise to an inverse system. We consider an element in its limit,

U= (u,,)e{liEZ[C,,y.]X .

The inclusion of (1 x 1)-matrices induces a map BGL,(I") » A(BI'), and since
myBGLy([) = noGLy([) = ZT' ™,

any unit u,e ZC, produces an element u, €1, A(BCp).
It follows from (6.5) that the compositions

1Au,

u?: BCpy A S'— BCpn\ A A(BCyn)—s A(BC ) —— A(¥)
are compatible up to homotopy when n varies. Thus we have a homotopy class
u?: holim BCpny A ST > A(%)
ok

which restricts to the u? for each n. In fact 4™ is uniquely determined by this
property. This follows from Milnor’s exact sequence [Mi], provided

E_nl‘l) [BCpry A S%H A(x)]=0.

But the <1i_m_“’ vanishes because the group in question decomposes as a product
of the finite group 7, A(*) and a compact group, cf. Sect. 2.
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Lemma 6.7 The p-adic completions of ho@) BC,. and CP*® are homotopy equiva-
lent (via the universal Bockstein).

Proof. It is clear that holi_r_rl BC,» ~ Bp,=, where - are the p-power roots of 1.
There is a fibration

H(Q’ 1) - Bﬂp’ nd H(Z(p)v 2)

and since the completion of H(Q, 1) is trivial, this gives the equivalence
B: (Byuy); —(CP*);. O

After completion we then get
u*: (CPZ); A S'— A(x))
which since A(*) is an infinite loop space extends to the map (Soulé embedding)
(6.8) w*: Q2L (TP™)y — A(%); .

If we substitute for C, the dihedral groups D,,» of order 2p” in the above we
can associate, to a compatible system of units

v = (v,)elim K,(ZD,,) ® Z,,
Jm

a map
(6.9) v*: Q(Z4 BOQ)); — A(x); .
Indeed, we just have to notice the homotopy equivalence
(holim BD,,); ~ BO(2); .

Let us next relate the two embeddings (6.8) and (6.9). The inclusion i: Cpn — Dy pn
has index 2 and it induces a homomorphism
{6.10) i*: K{(ZD3,) = K(ZC,n)}*?
for each n.
Lemma 6.11 Suppose ve(lirll-Kl(Zszn) ® 2,, maps to ueliEKl(ZCpn) ® il,
under i*. Then there is a homotopy commutative diagram

—~ #

0(Z.BOQ);  ——  A(x);

AN -

0(z,.CP*))

Proof. 1t follows from (6.5) with G = D, ,» and I' = C that there is a homotopy
commutative diagram

BDypy AS'  —o  A(x)y,

wr

BCpny A S1

The lemma now follows by letting n tend to infinity and completing at p. O
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Remark. The p-localization i* ® Z,, of the map in (6.10) is a isomorphism for
n = 2. This is clear for p odd by general considerations, and it follows for p = 2
from [OT, Proposition 4.2], combined with the fact that SK,(ZC,,) =0 and
SK(ZD3.-1) = 0.

Next, let us make a few remarks about the space Q~(Z +{BO(2))). First,
0(2+(BO(2))) = 0S* x 0(£BO(2))

and since 7, A(x) = Z/2 the factor OS* — A(*), induced from S! — A(*) needs not
concern us very much. Secondly, the usual embedding BO(2) — BO gives a map
from XBO(2) to BBO, which extends over Q{XB0O(2)) upon using that BBO is an
infinite loop space. By Bott periodicity, BBO = SU/SO so we have

(6.12) h: (2, BO(2)) > 0S' x SU/SO ,

which is rationally an equivalence. We denote its fibre BCO,. The loop map Qh
is split by a standard argument using the Becker-Gottlieb transfer of
B(2,{0(2)) » BO(2"), so

Q(BO(2)) ~ Q(*)x BOx CO,

It is not so clear, however, if the similar splitting holds on the delooped level.
Let us recall from [BM ] how to construct elements in }En_ Z[C]. Choose an

integer g which generates the units modulo p2. Let g, = ¢~ '; it has order p — 1 in
{(Z/p™)*. Consider the element u,€ ZC,- given by the formula

Tgn—l p—1 gp—l _ ] pr—1 )
13 L= T2 _In T;
©1 iy < T— 1) p" ;Z:o

where T'e C,, is the generator. This is a unit, and moreover

U= (u,,)e(l_iI_n_ZCpﬁ

by Lemma 4.8 of [BM]. The element u, and its conjugates under the Galois
substitutions T — T (i, p) = 1 are the analogues in Z[C,.] of the usual cyclotomic
units in Z[{,].

It turns out that the Soulé embedding u* associated to (6.13) is not sufficient for
our purpose: composed with the cyclotomic trace it is trivial on rational homotopy
groups in dimensions = 1 {mod 2p — 2).

To remedy this we work instead with A-theory based on localized spheres, or
based on completed spheres. We write A(X; R) for this form of A-theory with
R=1Z[1/g], Z, or Z,. The local case is treated in [W3]. For a discrete group
G there is a linearization map

L: A(BG; R) - K(RG)

which is a rational homotopy equivalence. Moreover, n;(L) is an isomorphism.
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Consider the elements in the localized group rings

g ..
(6.14) v, = 1/gT1 =972 ?—:echn

where R = Z[1/g]. If p = 2, take g = 3.
These elements are compatible under norms, cf. [BM, Proposition 3.1], and as
above they imply an embedding
(6.15) v*: Q(Z L (CP))) — A(x; Z[1/g]); -
Remark 6.16 With the use of techniques from [OT] one may prove that
i* K;(RD3pn) ® Zypy — K (RC)H? ® Z,,,

1s surjective also for the ring R = Z[1/g]. Of course, only the prime p = 2 presents
any problem.

It follows from compactness that ligi* ® i,, is onto, and hence that the map
v* in (6.15) factors as

#

0E.(@P™)y ——  AKZ[g))
(6.17) N s
Q2+ (BOQ2)); -
The difference between A(*; Z[1/g]) and A(*) has been studied in [W3]. First
recall from [Gr] the homotopy fibration
(6.18) [TK(F) - K(Z) - K(Z[1/g])
thg
where K{R) is Quillen’s space (from the Q-construction) with

7 K((R)=K{(R) foriz=0.

The homotopy exact sequence of (6.18) breaks up into short exact sequences as
follows.

(6.19) 0 K{(Z)— K{Z[1/9]) > Y.®Ki-1(F)—0.
llg
This follows from [S1, Theorem 3]. Let A(X ) denote Waldhausen’s A-functor
constructed from the category of finitely dominated spaces with weak equivalences
and cofibrations. It has 7y A(X) = Ko(Zn; X ), and the connected covers of A(X)
and A(X) are homotopy equivalent.
In [W3] it is proved that
A(x) - A(xZ[1/g])
(6.20) ! !
K@) - KE&[1/g))

is homotopy Cartesian, at least after outside completion at p. This gives an exact
sequence similar to (6.19), and since K (IF;) = 0 for i > 0.

Agis ()@ Zpy = Ay 1 (v Z[1/91) @ Zyyy, i > 0
6.21) A (Z[1/g) @ Ly = Ly D (A1 () B Z )
With Ai = 7[,-A.
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7 Induction and the cyclotomic trace

This section and the next is concerned with the evaluation of the composition

~ e* Trc

(7.1) QE.CpP™), A(*); TC(*, p)y

in spectrum homology, where ¢* is some Soulé embedding to be explicated later.
By (5.15) and (5.17),

TC(% p); ~ Q(+); x hofiber(0(Z, CP*)} ——— Q(+)})

and since the first component of Trcee® turns out to be trivial, we are left
essentially with a spectrum endomorphism of Q(X . CP*); which has a single Z,
in each odd dimensional homology group.

We take the opportunity here to describe the general plan of our calculation. By
construction the elements in the image of ¢* are in the image of

Res: A(BC,m); — A(x); (Res = Resf!)

for all m = 1. Since Trc commutes with Res by (6.6), it suffices to evaluate
~ &k Trc Res
(7.2) Q2+ BCpm)y ——— A(BCpm)y ——— TC(BCpm, p)y — TC{*,p);

for each m, where &% = po(l A ¢,), and ¢,: S' > A(BC,=) is to be specified in
Sect. 8.
Let j, be the natural map

jm: (holim THH (L))" — holim THH (I')°" — THH (I )¢
D b Y B -

where we have written THH( g)cvm instead of |sd,~ THH.(G)|*. We use the
notation Trc™ = j,, < Trc, and have by (3.7)

THH(L )" ~ Qc, (ABI %~
so that
Tre™: A(BI') - Qc,.(ABI)° .
We must evaluate
Res: THH(I')°m— THH () .

Let A;;3X be the subspace of 4AX of homotopically trivial loops, i.e. loops which
extend over the disc. It is a component of AX when X = BI for a discrete I, and
there is a projection

pruy QUX ) - QA X) .
In (7.22) below we show that there is a factorization
THH(Cpr)"  ——— THH (%)
(1.3 L W s
Qcpm(A[x]BCpm)C”'" = Qcpm(*)c”"'
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and in (7.18) we identify Res;y; in terms of a more computable (and well-known)
map in homotopy theory, namely an equivariant transfer mapping.
Consider the map
Fix: Qc,m(A[x]BF)C"m — O((A¢y BI))

which sends a point represented by a C,m-equivariant map f: S¥ - S¥ A ABI', to
its induced map on the C,n-fixed set. It is a section to the inclusion which embeds
(A1 BT into Ay B and Q(—) into Qc,.(—),

(7.4) im: Q((AryBI)7) > Qc,.(Ary BT ).

Special properties of the unit ¢ is used in (8.14) below to show that
priy e Trc™ o ¢* essentially factors over i,,. Thus in the splitting (cf. [tD] or (5.17)
above)

(*) Qc,. (A BCp)m—— [ QUECy xc,, (411 BCym) )

o
n=0

priyy© Tre™ < &* only has non-trivial component corresponding to the factor with
n=0.

Remark 7.5 1t is not true that Trc"™e¢* is concentrated in one component of
Oc,.(ABC =) under the splitting analogous to (*): it first happens after we apply
the projection pryy;.

The relation
@, Trc™ ~ Q(A4,)e Tre™ ™V

used in Sect. 5 in connection with the definition of Trc may be iterated to give the
homotopy commutative diagram

prygye Tre™
—_

A(BCpm) 0c,.(A[11 BCpm)Ce
(7.6) LT | Fix

Q(ABCpm) LN Q((At11BCpm)°r) .

Notice here that (ABCpm)°» = (A111BCpm)C». There is a homotopy com-
mutative diagram of assembly maps

BCp=+ A A(BCp») —*4—  A(BCp~)

l 1 A Trc lTrc
1.7 BCpm+ A TC(BCpm, p) —21<—» TC(BCpm, p)
i IAB I8

BCp'"+ AN Q(ABCp'“) — b Q(ABCp"‘)
where the bottom horizontal map is the obvious one, cf. Sect. 6, and 5.16. In order

now to complete the calculation of (7.2) in spectrum homology (with Z/p™ coeffic-
ients) we just need two calculations, namely the calculation of

(7.8) ST A(BCpm) —— Q(ABC,pm)



512 M. Bokstedt et al.

and the calculation (in homology) of

L85y

(7.9) O((A1y BCor)m)—11s 0 (#)6r—" Q(BC,pm)

where a,,: Qcpm(*)cﬂm — Q(BC =) is a special case of the splitting used in the proof of
(5.17).

The rest of this section studies the restriction map Resf in TC-theory in some
special cases, sufficient for our calculations outlined above. The arguments are very
round about, based in part on the affirmed Segal conjecture. One would like to
have a more general understanding of the restriction map.

Let us fix a cyclic p-group C of order r. We have

THH(G) = |sd, THH.(G)| ~¢ Qc(ABG)
by (3.7). For |G:I'| < oo we shall study the equivariant C-map
(7.10) Resk{(C): Qc(ABG) - Q(ABT) .

We are mostly interested in the induced map on fixed sets, which contain the
necessary information about Res§ on the TC-functor, but it is better to work
equivariantly for some of the arguments.

We begin by examining the components of ABG; each component is preserved
by the C-action since it extends to a circle action. We assume G to be a discrete
group. We have

1, ABG = [S%, BG],

the free homotopy classes. Thus the components of ABG are indexed by the
conjugacy classes [g], geG.

Lemma 7.11 For a discrete group G

ABG =[] A BG and Ay, BG = BCs[yg] ,
where Cg[ g1 denotes the centralizer of g.
Proof. The map

¢: NP(G)— N.(G; AdG) = E.G x; AdG
given by the formula

¢(gos - - - gx) = [gol. . -1gklg

with g = [] g:, identifies | N(G)| with the Borel construction of G, considered as
a G-space by the adjoint representation. But

Ade =141
is the union of the conjugacy classes, so
EG XGAdG = ]_[EG Xg [g] = U EG Xg G/CG[g]

and the result follows from (2.6). [
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For later use it is important to us to understand the power map 4, in terms of
the decomposition of ABG into its connected components.

If [g] is a conjugacy class which is left fixed by 4, then ygy~
and it is easily checked that y normalizes Cq[¢g]. If we identify

ABG = EG xg Ad G

! = gP for some ¥,

as in the proof above, then 4, corresponds to the p-power map on Ad G. It follows
that 4, on BCs[g] = EG x5 G/Cglg] is induced from conjugation with y on
Cslg]. We list this in

Corollary 7.12 Let ge G be an element whose p'th power is conjugate to g,

ygy "' = g”. Then A, BC3[g] — BCs[ g] is induced by conjugation with y~'.

It follows from the proof of Lemma 7.11 that
A BG = NP (G)yg »
N2 (G = {(gos - - - » gk)]l—l gi€lgl} .

Lemma 7.13 The component A;;BG is a model for the C-equivariant classifying
space Bc(G).

Proof. We have the G-covering

and it suffices to show that AEG = EG, the terminal object in the category of
(C x G)-spaces which are free as G-space. This object in turn is characterized by the
properties

* i AnG={1}

Ec(G) = {q,’) if AnG+{1)

for A € CxG.
Given a A which intersects G only in {1}, there is a homomorphism p: C - G
with graph A. Then

Map(S?!, EGY! = Mapc(S?!, EG)

with C acting through p on EG. A C-equivariant map from §' is determined by its
restriction to {e*™I€110 <t < 1}, s0

Mapc(§*', EG) = {f I - EG|f(1) =f(0)-g}
where g = p(T) and T-1 = e>™/I€l Let po(f) = f(0), giving a fibration

Map%(S*, EG) - Map¢(S?, EG)—L EG

with Maps (S, EG) = Q,EG =~ x. It follows that Mapc(S*, EG) ~ x.
If AN G * {1} then Map(S', EG)* = (¥, since G acts freely on EG. O
Suppose I' < G has finite index k. Then

A[I]BF b A[1]BG
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is a k fold covering space (use the model EG/I" for BI'). The finite subgroup C = S!
acts on the covering space, and there is a C-equivariant stable map (its transfer, cf.
[LMS, Chap. IV])

tef(C): ZF(A;,BG L) » 28 (A, B y)
inducing the equivariant infinite loop map

Trfé(C): Qc(A11BG 1)~ QA3 Bl +) .
We want to compare this with the restriction map from (7.10), and make the
Conjecture 7.14 On Qc(A;1;BG), TrfG(C) ~ Res§(C) as C-infinite loop maps.
Proposition 7.15 The conjecture 7.14 is true for C = 1.

Proof. There is a commutative diagram (cf. [W4])

Q(BG) —— Q(BI)

{/ lv Res l"\j
Q(4;,BG) A(BG) —— A(BI') Q(Ay,BI')

11 s lTr/

Q(ABG) —— Q(ABI') .

Here v is induced from the inclusion of G or I' in GL{(G) or GL(I'), j embeds
BG into the constant loops and Trf is the usual transfer of the covering BI' — BG.

Given the diagram, the lemma follows because j: BG — A1 BG is a homotopy
equivalence. O

For two subgroups I and € of finite index in G, we choose double coset
representatives g, e G,v=1,...,r

G=]] Ig,Q.
v=1

There are inclusions
iiT—>G, i(ghI'ngQg~t->T
Q-G j(grTngQg™'—>Q
(j(g) conjugates with g ~1).

Lemma 7.16 (Double coset formula). The C-equivariant stable maps j*°i, and
S gy 0ig,)* from THH(I') to THH(G) are equivariantly homotopic.

Proof. The proof is the standard one, based on the commutative diagram of FSP’s

G ——  MJ(Q)

i Teo
[Titg.)* 4
I — [ ML), I'y=T0g,9,

with @ being the wedge product (direct sum) of the j(g,). This gives a corresponding
diagram upon applying THH( ). Use Morita invariance to complete the
proof. [J
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We specialize to the symmetric groups X,. Define the C-equivariant stable map
Xn: THH(:Zn) - QC(*)

to be the composition.

ko THH(Z,)—— THH(Z, ) —"— THH(})

where i: 2, ; < X, and p: Z,_, — {1}. With the identification of THH(G) we get
a C-stable map

Ynt Qc(ABZ,) = Qc(#) .

Lemma 7.17 y,., ~c )n* [1], where = indicates loop sum, and [1] € Q¢(x) is repres-
ented by the identity.

Proof. By (7.16) the composition

THH(E,)—*— THH (S, ,,)—— THH(Z,)

is the wedge sum of the identity and the composition

THH(Z,)— THH(Y, ) ——— THH(Z,) .

Here Cy is conjugation with the n-cycle, so is homotopic to the identity. Compose
with p,.. U

The C-equivariant transfer of the n-fold covering
AEZ" X5n [n] d A[I]an
gives us an equivariant mapping
AyBZ, - QAAEZ, x5, [n])
which we can compose with the projection of AEZ, x5, [n] into a point to get
Int A BZ, — Qcl*)
Standard properties of the transfer show that |],x. extends over the group
completion
n=0
to induce a C-equivariant mapping
Xoo QB( ]_[ A[I]an> = Qc(*) .
n=0

This is a C-homotopy equivalence by the equivariant analogue of the Barratt-
Priddy-Quillen theorem. Here is a quick argument for this result when C is
a p-group and when we complete at p: the left hand side is known to be a model for
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QOc(*), see e.g. [Sh], so both source and target for ', has homotopy fixed sets equal
to fixed sets (after p-completion) by the affirmed Segal conjecture, [C]. That is,

D

hD
QB(]_[ A[”BZ,,> ZPQB<I_[ /1[1]BZ,,> . DcC

where X *? = Map,(ED, X). But ., is a non-equivariant homotopy equivalence,
so induces an equivalence of the homotopy fixed points. Hence

D
(Xtoo)DZ QB <L[ A[1]an> - Qc(*)?

is a p-complete homotopy equivalence, and the equivariant Whitehead theorem
([A], (2.7)) implies that y., is an equivariant homotopy equivalence

Proposition 7.18 Let C be a cyclic p-group. For finite G and I' = 1, the p-complete
version of (7.14) is true.

Proof. Since both Res(C) and Trf (C) are stable maps they are determined by their
restrictions to Ap;BG. Let p: G- Z,, n = |G| be the regular representation. It
displays G as a subgroup of X, such that p(G)-2,_, = Z,. The double coset
formula gives the diagram

THH(G) —— THH(Z,)
{ Res(C) Lix
THH(x) —— THH(Z,,) .

It follows that
xn°p ~cRes(C).
By (7.17) the C-maps y, extend to the group completion,
Yo' Ay BEE XZ > Qc(*) .

This is a C-map, and a non-equivariant homotopy equivalence. Indeed, forget-
ting the action of C, it follows from (7.15) that the above yx, is homotopic to x},, the
map constructed from the transfer above. It follows as for y., that

hD
X{-lé): QB(U A[I]an> _)QC(*)hD

is an equivalence, and so x,, is a p-complete equivariant homotopy equivalence.

Finally (x%,) '°y, is a stable C-homotopy equivalence of Qc(S°). The
homotopy classes of such are the units in the Burnside ring A(C), cf. [tD]. Since
C is cyclic A(C)* = {+1}, and as (x%) o xe = 1 in A(1)*, it is the identity for
C also. Finally yi, © p: A;1;BG — Qc(*) is equal to Trf (C). [

At last we examine the restriction map on the other components of ABG. This
requires a more concrete Morita invariance than the one used in Sect. 3. As
motivation, consider first the linear analogue in the case C = 1.
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Recall that a group ring is self-dual via the isomorphism
0. ZG -» Hom{(ZG, Z)

which maps group elements ge G to the characteristic map é, (5,(h) = 1if g = h,
8,(hy =0 if he G — {g}). Thus for aeZG, J,(y) = 6,(x7) where 7 is the usual
conjugate (7 = Zn,g~ ' if y = 3 n,g), and &, picks out the coefficient of 1€G.

It follows that

4: ZG ® ZG - Hom(ZG, ZG); A(0 ® f) = ady

is an isomorphism. Composition of maps on the right hand side corresponds under
A to the product

(ZG ® ZG) ® (ZG ® ZG)—-——ZG ® ZG

(%) pe®@p®oy ® i) =a® dsla;)fy,
and the trace homomorphism corresponds to the map
(7.19) Tro: ZGR® ZG - Z, Tro(o @ f) = o5(a) .

The cyclic object Ng ,(Hom(ZG, ZG)) translates under 4 into the cyclic object
Ng JZG® ZG; ) and (7.19) induces a map into the constant cyclic object
Z (= Ng_.(Z)). Indeed, on k-simplices

(7.20) Try: NS (ZG R ZG, )~ Z

is the composition Tr; = Trgod o. . .od,.

The product in (*), and hence the face operators in Ng (ZG ® ZG, p), are
“monomial” in the sense of mapping group elements into group elements. The
same is not the case for the degeneracy operators, because the identity in
Hom(ZG, ZG) does not correspond to a monomial in ZG ® ZG = Z[G x G], but
to the sum (g ® g) of the diagonal elements.

Only “monomial” operations generalize (in a straightaway manner) to the
topological setting of FSP’s. Thus in a topological version of Ng o (ZG ® ZG, p)
we need to abandon degeneracy operators. Equivalently, we must work with FSP’s
without units (but equipped with a stabilization map and with a product, cf. [B]).
We shall only consider a special example, namely the functor

GX)=G, AG, ~n X
of based spaces. There is an obvious stabilization
GX)AYS%X AY)
and a product
wEGX)ANGY)> %X AY)
induced from (*). Specifically, u is given as the composition
WG+ NG AXIAGL AGLAY)GL AGLAGLAGLAXAY

Mo A1 AL
Y5 G, AG.AXAY
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with

(g1,94) if g2=g;

uo(gl,gz,gs,g4)={* if g, % g5 .

Let THH,(%) be the A-space (=simplicial space without degeneracy operators,
[RS]) with k-simplices defined in (3.4). It is a cyclic 4-space. There are A-space
homotopy equivalences

4: THH,(%9) - THH,(M /(1)) .
Tr: THH (%) - O(x*)

The first one is induced from o %(X)-Map(G,,G. A X) with
6( g, h, x} = (g, x)6,. The second is given by (7.20) with

Try: liLn)Q"(G+ AGy A S")—»li_m)Q"S"

induced from the map &;: G4 A G4 — 1, defined as

1 ifh=g

x if h+g.

The realizations (as A-spaces) are denoted THH( ) as before. For FSP’s (with
units), the two notions of THH( ) are homotopy equivalent by [Sel, Appendix].

Morita-invariance (cf. Sect. 3) can be viewed as the composite homotopy
equivalence

(9, h)— d(g) = {

THH (Myg,(1)) —— THH(%)—— 0(+).
We finally can combine with the subdivisions. To define a C-equivariant trace
map (C cyclic of order r) we can use the formula (7.20) to specify
Try: sd, THH(%) — Qc(*)
Hence it suffices to give the C-equivariant map
Tro: sd, THHo(9) = Qc(*) ,
or equivalently the map

Tro: im Q"™(S™ A (G4 A G4)”) - lim Q™FS™®

with R = RC. It is induced from §P: (G, A G,.)® -1, given by

((gl,hl),...,(g,,h,))_*{l if hy = gisy for all i

+ if not .
We obtain a C-equivariant homotopy equivalence

(21) |sd, THH. (Mg (D) 2l |sd, THH (%) — > Qc(*) .

This is a description of Morita-invariance which is more convenient for our
purpose than the one from Sect. 3, but, of course, it is less general.



The cyclotomic trace and algebraic K-theory of spaces 519

Proposition 7.22 For G finite and g + | the restriction map
Resg: Qc(A1yBG) = Qc(*)
is equivariantly null-homotopic.
Proof. Under the equivalence
ABG ~¢|sd, N (G)|

the complement A;;;BG* of Aj;;BG corresponds to the subspace of sd, N&¥(G)
whose (k — 1)-simplices are the kr-tuples (go, . . ., gx—y) With []g; # 1. Let

8 GY - 1.
be the map with

* otherwise

5‘1')(91,...,gr)={

It induces a map

8P: holim QmR(§™R A G©)— holim QmRS™R |
— —_—

m m

or in other words a map
09 sd, THH(G) — Qcl(*) .

Consider the simplicial subspace sd, THH.(G ), of sd, THH,.(G) whose k-
simplices are annihilated by 6{’cd, >. . .>d, (i.c. map to the base point * eQG(*)
represented by the constant map). Its realization THH (G)m is homotopy equiva-
lent to Qc(A;4;BG*) via (3.7).

We need to show that the composition

|sd, THH.(G )| ——— | sd, THH.(Myg (1)) | —— 2 Qc( )

is equivariantly null-homotopic on the subspace THH (__g)m For this we define
correspondmg subspaces THH (Mg (1))i; and THH (%),
There is a C-equivariant diagram

(r)
Map(G., G, A S™) —— Map(G,, G, A S"™®) —“— Map(G,, ™)
14 14 14

(r} £
(Go AG AS™Y Ly G,AG,AS™ 2\ G,aS™R

with u® being the iterated product, and ¢, & the following maps

g1 ()(g) = (0: A id)(g™ f (9))
g(g, hx) = (6, Aid) (g™ 'h, x) .
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In the induced diagram,
(r}
holim Q"*Map (G, G, A S™)” —— holim @"*Map(G ,, S"F)
- —
14 14

=r)
holim Q™R (S™)" — 2, holimQ™R(G, A S™R)
— —_—

the vertical maps are equivariant homotopy equivalences.

Define the simplicial subspaces sd, THH.(M|(1))i1; and sd, THH.(% ), to have
k-simplices which are annihilated by e{’od, .. .°d, and e{cd, . . .°d,, respec-
tively. (Here d; is the i’th face operator in the relevant subdivision).

It is clear that

4: sd, THH,(%)1; — sd,(THH (M 6)(1))fi;
is a simplicial homotopy equivalence, and that we have
Res: sd, THH.(G )iy — sd, THH.(M /(1)
Hence to complete the argument it suffices to note that
Tr: |sd, THH.(9)| = Qc(*)
is constant on |sd, THH (%){;;| by definitions. [J

8 Homological calculations of the cyclotomic trace

This section completes the evaluation of (7.1) and (7.2) along the lines explained in
the beginning of Sect. 7. Let R be one of the rings Z, Z[1/g] or Z, where g is
a generator of (Z/p?)*, and let A(X, R) denote A-theory based on R-local or

A

R-complete spheres. More precisely, let Sk = S", S"[1/g] or (§"), in the three
cases, and consider the “FSP”

(8.1) T'r(S")=Sg AT, I'=QX (X connected and based)

In the definition of K (F) one only uses the values of F (and its matrix FSP M (F))
on spheres. Thus (8.1) is enough to define K(['g); we write

A(X; R) = K(I'x)

and remind the reader that A4,(X;R)= K (R[n;X]. Consider an element
g€ }iE(RC ). Its m’th component defines an element [¢,,] € A1 (BCm; R). We are

interested in

82) (Pri1y° Tre™)y [em+41 €11 (Qc, (A1 BCpm+#) ) ® R

for m = 0 and k = 0, cf. Sect. 7 for notation. Let us first however calculate
Try[em] €n; Q(ABC,m) ® R

We have

8.3) 7, Q(ABCpm) = HH{(ZCpm) @ (m, Q(x))® ™"
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where HH | (ZC ;=) is the first Hochschild homology group, i.e. the first homology
of the Hochschild complex Ng(ZC ). The first component in (8.3) is the spectrum
homology,

H{P*(Q(ABCpm)) = H(ABCym) = HH, (ZC,pm) .

The second factor is one Z/2 for each component of ABC . We shall disregard the
second summand in (8.3). In fact we are mainly interested in the cyclotomic trace
for odd primes, and then

1, QABC ) ® Z, = HH(Z,C ) ~ HH{(ZC ) .

In any case we can always project from homotopy to spectrum homology.
Instead of using the cyclic complex Ng (RG) to calculate HH,(RG) it is often
more convenient to use the isomorphic bar construction B (RG¢; G) of G with
coeflicients in the group ring RG viewed as a G module via conjugation. In our case
G is abelian so RG* has trivial G action. Concretely the isomorphism is given by

NE(RG)——> B, (RG*; G)

(8.4) 90® ... ®@grglail. . lakg=]]g:-
Let Te G be a generator (of order p™) and define elements in H,(G; RG®) by
Boi= T [T] .

Under the inverse of (8.4) they become B, , = 1/k[1 ® T*] if (k, p) =1 and
B = 1k — D[T® T* '] if p divides k.
Lemma 8.5 Let ¢, RG ™, and write ¢, = Y, a;T", ¢, = > b;T’. Then

Pt

Tr(e,) = Z Ckl&m) B> CilEm) = z ia;b; .

k=0 i+j=k(p™)

Proof. By definition, Tr(e,,) = [, ! ® &, ]in Ng(RG), and using (8.4) we get in the
bar construction

Tr(en) =Y, a;b; T[T, 05 4,j < p™
This is homologous t0 ¥ ¢;(e) Bmi- U
Let us decompose HH,(RC =) as
HH{(RCpm) = Ko @ K,

where K is the part generated by §,, , with (k, p) = 1 and K is the rest. Then K, is
¢(p™) copies of Z/p™. We shall use below the following result from [BM],
Proposition 3.7.:

(8.6) projk,(1 — 4,)Tr(e,) = 0in HH;(RCpm) ® Z/p" ™1 .
We return to (8.2). The target is naturally decomposed (as in (5.17)) into

(87) QCPM(AII]BCpm+k)Cp’" o~ l_[ Q(ECpn XCV(A[I]BCpm+k)CVr") .

n=0
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Lemma 8.8 Let S € C,m have order p' and let Ay5)BC m be the associated component
of ABCym. Then

(l) ECpn chn A[S]Bcp"‘ o~ BCI," X A[S]Bcpm for i é m-—n

(i) ECpnxc, Ais;BCpm = BCpm-i X BCpnyi fori>m—n.

Proof. Let f: ' — A;5)BC,m be the parametrization of an S'-oribt; it induces on
fundamental groups a homomorphism from Z to Z/p™ with cokernel Z/p™™". Set
g = ECpn xc,, f- There is the diagram of homotopy fibrations

Ag;BCym —— ECpuxc, AiBCyn — BCpn
s Tg |

st I, st - BC,..

On fundamental groups it induces the exact diagram

0 - Zp" —L 7, - Zp" > 0

ot I
0> Z —2 5 zZ > ZpHp" > 0.

Thus cok f, = cok g, = Z/p™ " and kerg, = p'*"Z so that =, is an extension of
Z/p"*' by Z/p™ ‘. Using that Z/p"'L»nl —cok g, is surjective it follows
that the extension is split. [J
The (m — n)'th iterate of 4, defines a homeomorphism

A7 1] Ay BC s x = (A1) BC 1)o7

where the disjoint union runs over the elements S e C,m+« of order dividing p™™".

Thus in (8.7)
ECpn Xc,, (A11)BCpm+ 1) 7" = BCp X (A1) BC pont) 7
Recall from (5.18) that the inclusion of fixed sets
D: Qc,.(A;11BCypm+x) = Qc,. (A1) BC i)
under (8.7) corresponds to
(89)  Dlxo, X1s oy Xm) = (im (xo) + £2(x1), 13 (x2), . . ., £ (X))

where i~ ! is the inclusion (since 4, ~ id on A;;) and ¢~ ! is the transfer associated
to the C,-covering

BC -1 X (A1) BC pm+1) 7" = BC oy X (A1) BC g+ .
Write j™ for the inclusion
J™: QAX ) = Qe (AX )
and

Fix™: Q¢ (AX ) — Q(AX )
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for its one-sided inverse which maps a C m-equivariant element f: SV — SV A AX
into its induced map of C,- fixed sets.
From (8.7), (8.8) we get the decomposition

Oc, (A BCym+i)m——— [] Q(BC,n X (A3 BC )7 ") .
n=90

There are p™ " components in (A BC,m+x)°" ", and since the functor Q(-)

converts disjoint unions into direct products we get an embedding

5: [] Q(BC,.)"" " [] Q(BC pn X (A1) BC pr )7 )
n=0

(into the first m factors).

Proposition 8.10 If p is odd, then the p-primary component of the element
(priay Tre"™), [em+i ] belongs to the image of j{™, modulo Tm d,

Proof. Let pryy; Tre{™ be the component in Q(BC,n X (Aj1) BCpmx)”" 7). We have
(*) 1 Q(BC pu X (A111 BC s ) ")y = (Z/p" ® Z/p™ T +)® P

The transfer map ¢? ! induces a surjection of Z/p" onto Z/p"~* and multiplication
by p on each of the p™~" summands Z/p™**. There is no component of pry;, Trc{”
in the first summand Z/p" in (*). This follows from the homotopy commutative
diagram
A(Bcpm+k) — Q(Bcpm X A[”Bcpmﬂc)
lf* l proj
A(x) - Q(BCpm)

where f, is the induced map in A-theory associated to BCpm«x — B{l}. Indeed,
Sy [ém+1] = 0 since the augmentation of em+keRC,,m+k 18 equal to 1e R. We have
left to show that the projection of pryy; Trc{™ [e,+] into the summands (Z/pm**)is
trivial. Let us write 7™ [&,,.] for this projection. Since ¢! is multiplication by
p on these summands and since Do Trc™ = Trc™ ™ we get from (8.9) that

(8.11) TV em+x]l =p TP [emss] forn>1.
We need a similar relation for n = 1. Let
PV Q(ABC pmin) - ( 11 A[S]Bc,,m+k>
s =1
be the projection and let

jlr’n—l: H /I[S]BC‘I,mH(—P(/1[1]BCIank)C"»"l

sF =1

be the homeomorphism induced from the (m — 1)’st iterate of 4,. Then

(8.12) tTm = A"‘ TP (1 — 4,)Tr .
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Indeed by (7.6), Fix™ Trc™ = AmTr, and hence
(**) T§™ = Fix" T™ = AmP™Tr .
From (8.9),

TV = T 4+ T
and with one more application of (*¥),

T = Ar=1 P~ UTr — in~ 1 A7 P{™ Tr

= Am=1pr=D(1 — 4,)Tr .

It follows from (8.6) that
pT{"[em+x] =0 (mod p™**~1)

and hence upon using (8.11) that
(8.13) PHT™[epmer] =0, 1Zi<m.

We finally make use of the norm compatibility of the &, +x, or equivalently that
the restriction in A-theory of [, 1+ 1] iS [£m+x]- If we write Res = Resgr:*  then

N
Res T™ (emiks1] = ™ [em+i]

By (8.13), p"* ' T [esx+i+11=0 in Z/p"****1 Any homomorphism from
Z/pmtk*titl to Z/p™** has Z/p'*! contained in its kernel, and we can conclude
that T/ [e,4x] =0 fori> 0. O

Consider the composition & = uo(e, A 1),
eh: O(S' A (BCpm)y) > ABCI*, R)
and let as above
A7 Q(ABC m) — Q((A411yBC,pr) )

be the homeomorphism induced from iterating 4,,.
We have from (8.10) with & = 0 that

pryyy Tre™ e, ] = prpyy Trc” (e, ] + 6(6m)
with
Pru]Tng") [emlem, Q((A[l]BCpm)C’")(p) >

cwem (11 086,7").
n=1

The element g, induces a homotopy class

m-1
EX: Q(S* A (BCpm)+) = [] Q(BCpn x (A1 BCpm)™") © QCPM(A[UBCI,".)CP”‘"

n=1
where the first map uses the multiplication

BCpm X (/1[1]Bcl,m)c”m"l d (AU]BCPM)CPM—"
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induced from the inclusion of BC,m in (A;;;BC )" and the product in A;;; BCpm.
It seems likely that in fact g, = 0.
Proposition 8.14 Let p be odd. After p-completion

prigye Tre™o gk :j""’OJQ'OTroa,"; + &}

Proof. We write C = C,~ and do not indicate p-completion in the notation. There
is the homotopy commutative diagram

G(BC, A SY) 2™, BC, A ABC) —M  ABC)
11 A pry Tree 4 pry Tre™
BC, A Qc(A BCY —— QoA BC)E
where uy is the composition
BC, A Qc(Ai1;BC)C — (A3 BC)E A Qc(Ary BC)
— Qc(A17BC x A BC)°
— Qc(A1;BCY .

The commutativity of the square expresses that the cyclotomic trace commutes
with assembly maps, cf. Sect. 6. From (8.10) we have the factorization

S? —" ,  A(BC)
l fm l Tim
i (m) .
Q((41BC)) —— Qcl4BC)
where 7™ is the composition of prj;;° Trc™ and the projection onto
m—1
Q(BCPmXA“]BCpm)X Q((/l[]]BCpm)pval
n=0
It follows that 7o y,°(1 A &,)is homotopic to the composition

A pim

(*) 0(BC. nSH-"5BC, A QA BCK)—— (A BC))

j (m)
J

—_’QC(AU]BC)C

Together (7.6) and (8.10) show that
t™ ~ AroTro g,
and if one further uses (7.7) and the commutative diagram
BC, A Q((4;yBC)°) —— Q((4;1;BC))
Tindy T4y
Ky

BC. A QUBC) —  Q(ABC)

the composition (*) becomes homotopic to j™ o 4 moTreg*
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Remark 8.15 1If p = 2, then p-completion does not kill the extra p™ summands Z/2
in (8.3), and

m:(Q(4BC)) » HH,(Z,C)

is not injective. Thus it is not obvious, although very likely, that (8.10) and hence
(8.14) are correct as stated. However, the weaker forms where homotopy classes (of
infinite loop maps) are replaced by their induced homomorphisms hold true. This
is all what is really needed for our key calculational result to be presented below in
(8.20).

Before we can continue our calculations it is convenient to examine the fixed
point structure of the discrete model QB (H AmBZ,) for Qc,.(*). By (7.11),

(A[l]BZn)Cp"' = LI A[S]BZII = H BC [S]

where S runs over the conjugacy classes of elements in X, with $7” = 1. Conjugacy
classes in symmetric groups are determined by types (=cycle decompositions).
If S has type (1) ... (p™)* then

C[S]= ﬁ Zalep.
i=0

SO
S i=0
and therefore

(8.16) < 11 AyBZ, > " ﬁ (U Eka;k(BCpi)k> .
i=0 k

n=1

The ’th factor on the right-hand side is a model for Q(BC ), cf. [May] or [ Sel] and
(8.16) is just the decomposition of Qc(*}€. One possible identification is via the
transfer (compare the discussion preceeding (7.18)): the space

EXyx X*x5, [k] = EZy x5, X*
projects onto X, and we may compose the (non-equivariant) transfer of
EXi X5 X*¥ > EX x5 X*
with the projection to obtain
a EX x5, X > Q(X) .

These maps induce the equivalence

(8.17) 15 QB (]] EZy x5 X )—— Q(X) .

(One may show that (y%, )" = [ [T o x5S, where 1, is the equivariant transfer used
in (7.18); this gives another proof that QB(] | A(1;BZ,) is a model for Qc(*)). Let
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Te X, be the cycle of order p™, and let (A{;;BZ »)" be the image of the natural
map from (A3 BCm)c to (Agy;BX ), ie.

(At BE ) = || AgrryBE

i=0

The centralizers of 77" are X, [ Cpm-1, 50
(A BZ )7 = 1] EZp x5, (BCpm- )"
and

Q((A{yBZym)7) = [] Q(EZ, x5, (BCom-1)")

With this identification

(8.18) om: Q((A11,BE ,m)7) [[ Q(BC 1)

is equal to the product of the compositions

Q(EZ s, (BCym- 1)) = Q(Q(BCym-1)) = Q(BC pm-)
of B¢~ and the action QQ(—) - @(—). For i = 0 in particular
(8.19) Ko QA iz BE ) = Q(BC,)

is just the identity.
Let uy,€ H,,(CP*; Z) and e, € H,(BC,w; Z/p™) be generators, and let

i Qc,.(¥) = Q(BC,m)

be the splitting onto the first factor, used in the definition of TC(%, p) in Sect. 5.
Here is the main calculational result of the entire paper.

Theorem 8.20 In spectrum homology with Z/p™ coefficients, the composition

G(S' A CPE)—-—s A(%, R)—Es (e (+)7); — 2> Q(BC,m);

maps e, ® u,, into (X (1/ky** 1ci(en))er 2. Here k varies over the integers
1 £k £p™— 1 which are prime to p and c(e,) is the integer from (8.5), and
R = 2[1/2], Z(p) or Zp.

Proof. Let us drop the notation for p-completion. We consider the commutative
squares

O(S' A CP¥) ——  A(%R) SELN Qc,.(*)°

T 1 Aey T Res T Res
O(S' A BCpmy) —%5— A(BCpm; R) —=" Qc,.(ABCp)r
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with ey : BCpm - CP* the generator of H(BC,»; Z). Since 1 A ey is an isomor-
phism in odd dimensional spectrum homology with Z/p™ coefficients, it suffices to
calculate the lower horizontal composition followed by Res = Resgp}m. By (7.22),

Res o Trc™ ~ Res e pryyy© Tre™ = Trfe pryyy o Tre™

The composition
o 0 trf: Qc, (A1 BCpm) ™ = Qe (%) —— Q(BC pm)
annihilates the subset

Q(BC pn X (A11BC ) )

m
=0

m—1
[l QBC,.y"" =
n=1

and (8.14) shows that
o, ° Res o Trc™ o g o~ o, 0 j™ o AP o Trogk
We know from Sect. 6 that Tr commutes with the pairings y, so have
O(S' A BCpns) —2— A(BCpmiR)
L TrEn) A t lTr
Q(ABCym) A BCymy —— Q(ABC,pm)

Let p: Aj1BCpm — A11BZ ,m be induced from the usual inclusion of C,m into
Zm. Since Res ~ Trf = yi,  p by (7.18),
Res oj(m) ~ X;mopoj(m)

on Q((A;1;BC,m)°). We have left to calculate the composition

G(S' A BCymy) 20 0(ABC ) ——s Q(A'BZ m)
ay .
—_— Q((A[uszm)C"")

L[] Q(BCm-1)

L2%
—— O(BCm)
where
A/szm = H A[TP'] Bme .
i=0

The infinite loop map «,, x;mj » is determined by its value on A'BX =, and is
trivial on all components Ajr»BZ = with i > 0. Moreover by (8.19) the

Aomo po A™: Q(Air BE pm) = Q(BC )
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becomes the identity when we identify Ay BZ,~» = BC,=. This reduces us to
calculate the image of ¢; ® e,, under

G(S* A BCym ) 2 0(ABC ) A BC s

—uLQ < LI A[Tk]BCpm>

tk,p)=1

prep
_— Q(A[T]sz"‘) .

According to (8.5), e; ® e,, is mapped to the class (Zci{en) " fm. k) @ €2,
Let Y% Cpm— C,m be the homomorphism which takes T to T* It induces
homomorphisms of BC,~ and ABC,. making the diagram

l/!k
A[T]Bcpm —_— A[Tk]BCpm
leval . l eval
BCpn —~  BCpm

commutative. Since y* is inner in X, the inclusion BC,,m——~p———>BZ »m and the
composition peoiy* are (freely) homotopic. In particular they induce identical
homomorphisms on homology.

Since Ay BCym = A1 BX  is a homotopy equivalence, and since f§,, ; all go to
e, under the evaluation map, e; ® e,, is mapped to

ch(ﬁm)(lpi)_l (e1424) = (Z(l/k)l +nck)e1 +2n
This is the claimed formula. [

The result above can be formulated entirely in the framework of group homol-
ogy. This is carried out in [BM] where the numbers X (1/k)** *¢, are also examined
for various choices of se!i_n_l_RCp’;. This will be used in the next section.

For small primes the reader can easily carry out the calculation. Consider for
example the case C,» = Cs(p = 5, m = 1). Take g = 2; it generates the multiplica-
tive group of Z/25. In the local case R =Z/[1/2], a possible unit is
e1(T) = 1/2(T? + T~2). Its inverse is

(M t=1-T-T '+ T>4+ T2
and c, is the coefficient of T* in

%

Tme(T) ™} = =27+ 277~ 2T° + 274

Hence in Z/5 we have

. 3if n=0 (mod4)
(8.21) Y (/k) e =< 4 if n=2 (mod4)
k=1 0if n=1 (mod2)
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Corollary 8.22 In spectrum homology, the composition

e* rc

(2. CP ™)) — " A(; R}y — s TC(s, p)p —— ((Z. TP*);

multiplies with the p-adic number }iﬂ([ (1/k) " ci(e,)) in dimension 1 + 2n, where
the sum runs over integers 1 < k < p™ — 1 which are prime to p.

Proof. This follows from the proof of (5.15), from (8.20) and from the commutative
diagram

0! APy T Gist A CPY);
T1nes et
GS' A (BCpm)s)p %, 5(ST A (BCyw)s)
together with the fact that the S!-transfer
Tif,: Hy(S* A CPZ, Z/p™) > Hy(S' A BCpu: Zfp™)

is an isomorphism in odd degrees, cf. [MMM]. (]

9 The main theorems

The cyclotomic trace functor of a point was calculated in Sect. 5. After completion
at p we have

©.0)  TC(x,p); = Q(x); x hofibre(@(Z, CP*); — = 0(x);)

Let R=1Z, Z[1/g] or Z, and let ge(l_i_rr_l(RCpm)". There is an induced map

e*: 02 +(CP™)); - A(x; R) and we are interested in the composition
9.2) Q2. (CP™)); ———*A(* R); — L TC(x, p)y

for various choices of ¢.

The first component of Trc under the splitting (9.1) is the topological Dennis
trace and we first evaluate Trog®.

We must recall the relevant choices of ¢ in the three cases R = Z, Z[1/g]
and Z,.

() R=Z:e,= T\~ M/z(T_l Z T

Tg 1>p 1 g}: 1 lp" 1
T? — 1

9.3) (i) R=2Z[1/g]: &, = 1/gT 92 T

A—T,

(lll) R = ZI'; &y =m
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Here 7T, eCpn is the generator, g is an integer which generates (Z/p?)*,
ge=g""" , ~€Z, is a certain non-trivial (p — 1)’st root of 1 which we shall not
further specﬁ"y at present, and w: F, — Zx is the Teichmuller character.

Lemma 9.4 Let p be an odd prime, and let ¢ lim RC,,,. be as in (9.3). In case (i) and

case (ii), Tree* is homotopically trivial. In case (iii), Tro&* is homotopic to the S*-
transfer composed with an automorphism of Q(Z CcpP™)

Proof. The composition is induced from the direct limit (over m) of the composi-
tions

St x BC o5 O(ABC ) X BC o

PIiyy

— QA BC )

Lo

—Q(*)

where we have not indicated p-adic completion in the notation. Thus to prove the
lemma it suffices to show that

[priTrien)] = 0 in n Q(Aj1;BCym) -
We have (cf. [BM]):
T Q(ABC )y = HH{(RC pm) = H1(Cpm; RCyom)
and the projection pry; corresponds to the homomorphism
H{(Cpn; RCpm)— Hy(Cpm; R)

induced from the homomorphism é,: RC,~ — R which picks out the coefficient of
1€ C,n. With the notation from Lemma 8.5,

Lot Tr(em)] = colem) Bm,o -
In case ( ) and (i) of (9.3), & n€(RCpm)™ is visibly symmetric in that ¢; = a_; in
the expression &, = Za; T', ie Z/p". The same is then true for ¢, and hence

pm-1

Colem) = Y iab_;=0.

i=1

1
In case (iii), ¢co(e,) = 11— Indeed,

i -1
o= " T ol -2

dg =

which gives Aby —bpn-:=w(A—1) and Ab;=b;,_, for i+ 0, and hence
colen) = 1/1 — A as claimed. Consequently

poprpye (Tr(en) x 1) ST A (BCpym) 4 = Q(A(1;BCpm)
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sends the homology class ¢; ® €;,€ Hypms1(SE A BC,m; Z/p™) non-trivially to
HEE5 1 (Q(Ay1) BC ), Z/p™).
Using Frobenius reciprocity, Lemma 6.5, we get

S' A (BCp)y  — QA1 BCpr)
l 1 Ay, TRes
St A (BCpm+1)+ g Q(A[l]BCpm+1)

and hence a mapping
hoMS‘ A (BCym)y — ho}i_@_Q(A[l]BCpm) .
Both spaces are understood to be completed at p. The left hand side is

2, (CP*) by (6.7), and the right hand side is Q(Z + €CP*)according to Proposition
5.15 and Proposition 7.15. The S*-transfer

Tif: Q(2, CP®) - Q(BC,») ,
induces a surjective homomorphism
Hy42,(24 CP®)— Hy 1 2,(BCpm)

for all m = 1, [MMM]. Thus to evaluate in spectrum homology the map induced
from

(*) 0z, CP); »Q(Z.CP™);
we can compose with the S'-transfer in the range and with the inclusion of
Q(2+ BCpm) into Q(X . €CP*), in the domain.

The above homology calculation shows that (*) induces an isomorphism in

homology and so defines a homotopy equivalence of spectra. Its composition with
the S!-transfer Q(X, CP®) — Q(*) is equal to Tree*. [J

Recall for any space X that Wh(X) = WhPY/(X) is the homotopy fibre of
T A(X) - 0(X)

and that
A(X) = Wh(X)x Q(X)

(cf. [W4]). Similarly for R = Z[1/g] or Z, we can define Wh(X; R), as the fibre of
Tr: A(X; R); - Q(X),

and obtain a splitting

A(X; R); ~ Wh(X;R), xQ(X), .

Comparing with (9.1) we see that the cyclotomic trace gives a map

Tre: Whis; R); — hofibre(J(Z , CP*); — s 0(x)7) .
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If R = Z or Z[1/g], Lemma 9.4 shows that the Soulé¢ embedding &* lands entirely in
Wh(=; R), whereas for R = Z,, we naturally have

&* hofibre(Q(Z , CP®); — Q(x);) » Wh(x; Z,)} .
In all three cases, the composition (see (5.16) for the definition of a)

aeTre

0(Z,CP™)) — s A(x R); T 0z, CP);)

was calculated in spectrum homology in Corollary 8.22; it multiplies by the p-adic
number

Oule) =1lim 3 (1/k)' " "cilem)

k,p)=1

in dimension 1 + 2n. These numbers were expressed in terms of more common
number theoretic functions in [ BM, Theorem 4.9] and in [Be]. We quote the result.
Let L,( ,w™") be the p-adic L-function with respect to the ( —n)'th power of the
Teichmuller character.

Theorem 9.5 Let p be an odd prime. Then (i) R = Z: The element ¢ = (g,) listed 9.3(1)
has 8,(¢) = (w(g) " — DL, (1 + n,w™")

(i) R=Z[1/g]: The element & from 9.3(ii) has 0,(e) = (1 — g ")L,(1 +n, @™").
(ii) R = Z There exists a non trivial AGZX with 27~ = 1 such that the unit ¢ in
9.3 (ui) has 0 (s)eZ for n# —l(modp— 1). Moreover, if p>3 and n= —1
(mod p — 1) then the p-adic valuation on 8,(¢) is v,(0,(¢)) = 1 + v, (1 + n).

Actually the results of [BM] and [Be] are a little stronger than indicated in
Theorem 9.5 in that [BM] shows that we cannot choose “better” units than the
ones specified in (9.3).

Remark 9.6 (i) For p=2 and R =1Z[1/3] we have the compatible units
&, =3%(1+ T, + T, '), and in this case o  Trc o ¢* multiplies with 2in H 4 4,(—; Z,)
and is zero in Hiy4,(—; Z3).

(i) For p odd, let B, be the k’th Bernoulli number, that is,

e —

= Y (Bu/k!)t*
k=0
The value of L1+ n w™ ")e Qp can be given modulo p™ as follows: let
k=pm" 1(p—1)— n Then
By/k = (p*"' — 1)L, (1 + n, 0 ")(mod p™) .
In particular if n = 0 (mod p — 1) then
(g7" = DL, +no™")
is a p-adic unit by von Staudt’s theorem. For nodd, L,(1 + n, ™) = 0. For neven
andn # 0(modp — 1),(g ™" — 1)is a p-adic unit and L,(1 + n, @™ ") is a unit if and

only if p does not divide B, —,/(p — 1 — n). This happens for all even n precisely if
p is a regular prime.
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Since Ly(1 + n, w™") = 0 for n odd, the composition Trc ¢ &* is only non-zero in
dimensions congruent to 1 (mod 4) when R = Z or Z[1/g]. Let us therefore project
from CP® = BS' to BO(2), and consider

Tre: Whix; Z[1/9]); — 0(Z+ BO(2));

By (6.10) and (6.11), the Soulé embedding &*: Q~(Z+(EP“°),§ - Whi*; Z[1/g]),
factors over Q(2, BO(2)), , so we have the composition

rc ~

©7) (£, BOQ); —— Whix Z[1/g1); ~— ((£ 1 BOQR)); -

Corollary 9.8 The composition in (9.7) is a homotopy equivalence at odd regular
primes.

For odd primes p,

P-2
9.9) Q. CP7)y =[] 0X);
i=0

cf. [McG], where the i’th factor has homology concentrated in dimensions 1 + 2n
with n = i(p — 1). The even components together give a splitting of Q(2 . BO(2)), .
The S!-transfer from Q(£ . CP®) is known to be non-trivial precisely on the factor
Q (Xp - 2); .

Corollary 9.10 For R = Zp and with the units of 9.3 (iii) the composition
~ ¥ A Trc ~
O, CP*)) —— Wh(x Z,); ——Q(Z,CP*);

is a homotopy equivalence of the factors of (9.9) corresponding to 0 =i <p— 3.
For p>3 it induces multiplication by (1 +n) in HiFS,(Q(X,-2)) when
14+2n=—1{mod2(p — 1))

The natural map from A(x); to A(x,Z[l/g]); has fibre K(IF,); =
(ImJ x Z), . By elementary obstruction theory there are no non-trivial maps from
ZCP* into BK(IF,), . Consequently the Soulé embedding

Z.CP*—— A(x Z[1/g]);
restricted to ZCP* lifts to A(*), . The composition

'3

(9.11) SCP* L A(a)p 2 Gz, CP)p

was evaluated in homology above, and we get
Corollary 9.12 (i) The cyclotomic trace map
Trc: Wh(x)) — Q(2BO(2)),

is split surjective if p is an (odd) regular prime.
(ii) It is a rational equivalence if L,(1 + 2n, ®~*") % 0 for all n.
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The rest of the section is devoted a proof of the K-theory analogue of Novikov’s
conjecture. Let I" be a discrete group. We introduce the following

Condition (C) There exists a prime p such that
(i) L,(1 +2n,0 )%+ 0foralln
(i) H(BI'® Q- [lim H,(BI; Z/p")] ® @

1s injective for each i.

No prime number is known where (i) is not satisfied, and it may well be true in
general. However, as with regular primes it seems one cannot prove that there are
even an infinite set of primes where (i) is valid. The second condition is satisfied for
all primes if the integral group homology H;(I') = H;(BI') is finitely generated.

Theorem 9.13 Suppose I' satisfies Condition (C). Then the assembly map
BI'y A A(x)— A(BI') is rationally split injective; it induces a split injection on
homotopy groups of spectra.

Proof. Let us first note that we may use Waldhausen’s decomposition of 4(X) as
a product of Q(X) and Wh(X ) = WhP(X) to divide the problem into two. We
need to show that the two maps

BI'. A Q(x)— Q(BI')
BI', A Wh(+)— Wh(BI)

are rationally injective. The first is obvious. For the second we use that the
cyclotomic trace commutes with the assembly maps, cf. {6.2), so that we have the
homotopy commutative diagram

BT, A Wh(*) Wh(BTI)
ll/\Trc lTrc
BT, A TC(%,p) —2* TC(BI, p).

Ha

We further compose with
o TC(X, p)— ClX, p),
complete at p, and use (5.15) to get the diagram
BI'y A Wh(x) - Wh(BI')

(*) l |
B, A Q(Z,CP™); - holim Q(EC,nxc,. ABI'); .

The bottom horizontal map urc is the composition
LA,
BI, A Q(Z,CP®)) —>BI', A Q(BC,)
—— Q(EC,n %¢, BI')

1xi

——Q(ECpnxc,, ABI)
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with t,: Q(£+ CP®)— Q(BC,») the relevant S'-transfer, and it BI' — ABI the
inclusion in the constant loops, cf. the discussion following (6.3).

The reader is reminded that the smash products in (*) take place in the category
of infinite loop spaces (or spectra); so by definition

Bl A Q(2,CP®)~ Q(Z.(BI x CP™))
and the assembly map puyc in (*) is induced from
1xi: CP® xBI' > CP® x ABI'
where i is the inclusion into the constant loops. There are S’-equivariant maps

Priy

ABL, —2, A,\\BT, —— BT,

where as before Ap;BI" is the component of homotopically trivial loops. The
inclusion i is non-equivariantly a homotopy equivalence, so induces an equivalence

Q(BCpx BI')——— Q(EC,n X, A1) BT') .

Its inverse composed with the map induced from pr(; gives
Ppyy: Q(ECpn %, ABI') - Q(BC X BI') .
From (*) we then get the homotopy commutative diagram

B, A Wh(*) ———s Wh(BI")
(**) llAaOTrc r lP“]oaoT[‘c
Q(Bl'; A £,CP%)) —— holim Q(BC,»x BI'); .
We show that the bottom horizontal map induces an injection on rational

homotopy groups. For any spectrum the rationalized Hurewicz map is an isomor-
phism, so

(@Bl 4 A 2. CP*))® Q —— HF**(Q(BT, A Z,CP*)® Q

=HBIr, AZ,CP*)®Q
= ZgHmAzi—1(BF) ®Q
is an isomorphism. Consider the homomorphism
nm(ho‘lir_rl Q(BC,»xBI');) - li_rﬂn,,,(Q(BCpn xBI');)

— lim H,(BC, x BI; Z/p")

- li_f_n_Z@Hm~2i—1(BF§ Z/p").
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Where the last arrow is from the Kiinneth theorem. The composition of this
homomorphism with 7, from (**),

E®Hm‘2i“1(Br) ®Q - Zeaho}i_mHm—Zi—l(BF; Zjp")® @

n

can be identified with the (direct sum of the) natural homomorphism induced from

reducing from Z coefficients to Z/p" coefficient. This follows because the S'-

transfer Q(2, €P ) — Q(BC,») in odd dimensional spectrum homology surjects

Z to Z/p", cf. [MMM]. Condition C(ii) now tells us that T, ® @ is injective.
We next use the Soulé embedding from (9.7)

& Q(Z,. BO(2)) » Wh(x Z[1/g]);

whose composition with the cyclotomic trace is multiplication with
(1 =g *)L,(1 + 2k, ™ ?*) is spectrum homology in degree 4k + 1 by (9.5.ii).
From (6.20) we know that the 1-connected cover of Wh(x; Z[1/g]), is rationally
equivalent to Wh(*),, so

Tw((BI+ A Wh(*));) ® Q = m,((BI'+ A Wh(x Z[1/9]));) ® Q

for m > 1. With this and the above, we are reduced to showing that (1 A oo Trcog*)
induces an isomorphism from the rational vector space

lim H,(Z, (B[ xBOQ2)); Z/p )@ Q = }® imH,_4-:1(BI; Z/p*) @ Q

s kz1 s

to itself. The induced map on the k’th summand is multiplication with
(1 =g~ 2*)L,(1 + 2k, ©~**) which we assume in Condition C(i) to be non-
trivial. [J
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