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1. Preliminaries and the Main Result

1.1. INTRODUCTION

The aim of the present paper is to show that Hochschild homology and cyclic
homology of any associative algebra in any characteristic can be described via
homological algebra of functor categories over the category of non-commutative
sets constructed by Fiedorowicz and Loday [2]. Our results should be considered
as a different version of the theorem of Connes [1], where cyclic (co)homology
is also described via functor (co)homology, but in the category of cyclic modules.
Our results and ideas are non-commutative versions of the recent development of
commutative algebra homology via functor homology given in [4–8].

1.2. CATEGORY OF NON-COMMUTATIVE SETS

We introduce the category F(as), which we call the category of non-commuta-
tive sets. Lemma 1.1 shows that this category is isomorphic to the category �S

introduced by Fiedorowicz and Loday in [2] (see also [3]). Objects of the category
F(as) are finite sets

[n] = {0, . . . , n}, n � 0.



40 T. PIRASHVILI AND B. RICHTER

A morphism [n] → [m] in F(as) is a map f : [n] → [m] together with a total
ordering of the preimages f −1(j) for all j ∈ [m]. If f : [n]→ [m] and g : [m]→
[k] are morphisms in F(as), then the composite of g and f as a map is gf and the
total ordering in (gf )−1(i), i ∈ [n] is given via the ordered union of ordered sets:

(gf )−1(i) =
∐

j∈g−1(i)

f −1(j).

Clearly there is a forgetful functor F(as) → F . Here F denotes the category of
finite sets. The objects of the category F are still the sets [n], n � 0 but morphisms
in F are just set maps.

We let �(as) (resp. �) be the subcategory of F(as) (resp. F) whose morphisms
f : [n]→ [m] preserve the zero element, that is f (0)= 0. Again, there is a forgetful
functor �(as)→ �.

If g : [n] → [m] is an order preserving map (in the usual ordering of [n] and
[m]) then the restriction of the total ordering of [n] to g−1(i), i ∈ [m] allows us to
consider g as a morphism in F(as). In this way one obtains a functor �→ F(as),
which is the identity on objects and an inclusion on morphisms. Here � is the
standard category of simplicial topology: objects of � are the sets [n], n � 0, and
morphisms are non-decreasing maps. Thus one can identify � with a subcategory
of F(as).

A morphism of the category F(as) is called injective (resp. bijective, surjective)
if it so as a set map. Clearly the forgetful functor F(as)→F is bijective on
injective morphisms. In particular any bijection [n]→ [n] is a morphism in F(as).

LEMMA 1.1. Any morphism f : [n]→ [m] in F(as) has a unique decomposition
g ◦ h, where h is a bijection and g is a morphism in �.

Proof. It is enough to observe that there exists a unique order preserving map
g : [n]→ [m] such that

Card(g−1(i)) = Card(f −1(i)), i ∈ [m]

and for this g there exists a unique bijection h with f = g ◦ h. Conversely, if f =
g ◦ h with bijective h, then for each i ∈ [n] the number of elements in g−1(i) and
f −1(i) are the same and the lemma is proved.

If f : [n]→ [m] is a morphism in F(as) and f = g ◦ h as in Lemma 1.1 then
we write g = µ(f ) and h = ω(f ).

COROLLARY 1.2. The symmetric group �n+1 acts freely on HomF(as)([n], [m])
and the set of orbits can be identified with Hom�([n], [m]) via the map f 
→ µ(f ).

Another consequence of Lemma 1.1 is that the category F(as) is isomorphic to
the category �S considered in [3] and [2].
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1.3. ASSOCIATIVE ALGEBRAS AS FUNCTORS ON NON-COMMUTATIVE SETS

Let A be an associative and unital algebra over a commutative ring K with unit and
let M be an A-bimodule. We let

L(A, M) : �(as)→ mod and L(A, A) :F(as)→ mod

be the functors given on objects by [n] 
→ M ⊗ A⊗n and [n] 
→ A⊗(n+1), respec-
tively. Here mod denotes the category of K-modules. In order to describe the action
of morphisms on L(A, M) and L(A, A), we need some additional notation. Let I

be an arbitrary subset [n] but the elements of I may be ordered differently and let
ai ∈ A for i = 1, . . . , k and a0 ∈ M. Then we denote by

∏<
i∈I ai the product of

the elements ai according to the ordering in I . For a morphism f : [n] → [m] in
�(as), the action of f on L(A, M) is given by

f∗(a0 ⊗ · · · ⊗ an) := b0 ⊗ · · · ⊗ bm,

where bj = ∏<
f (i)=j ai, j = 0, . . . , n. Moreover, for M = A the same formula

shows that L(A, A) factors through F(as). One observes that if A is commuta-
tive and M is a symmetric A-bimodule the functor L(A, M) factors through the
category � and the functor L(A, A) factors through the category F .

1.4. THE NON-COMMUTATIVE CIRCLE

Before we define the non-commutative circle, let us recall the construction of the
smallest simplicial model of the circle. Consider the finite pointed simplicial set
C : �op → � which assigns [n] to [n]. The face and degeneracy maps in the sim-
plicial pointed set C are given as follows. The map si : [n]→ [n+ 1] is the unique
monotone injection, whose image does not contain i + 1, while di : [n]→ [n− 1]
is given by

di(j) =



j if j < i,

i if j = i < n, resp. 0 if j = i = n

j − 1 if j > i.

We claim that C considered as a pointed simplicial set is a simplicial model of the
circle. Indeed, it is clear that 0 ∈ [0] and 1 ∈ [1] are non-degenerate simplices. The
first one is zero-dimensional and the second one is one-dimensional. On the other
hand, if j ∈ [n] and n � 2, then j = s0(j − 1) provided j > 1. Similarly 0 = s0(0)

and 1 = s1(1), which shows that all other simplices are degenerate and hence, the
geometric realization of C is a 1-sphere.

The functor C fits in the commutative diagram (see p. 221 of [3], with slightly
different notation):

�op ��

C

��

�Cop

��
� �� F ,
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where � → F and �op → �Cop are inclusions. Here �C is the category con-
structed by A. Connes, with the property that contravariant functors from �C to
mod are cyclic objects in mod (see § 6.1 of [3]).

The following important observation was made by Loday (see Exercise 6.4.1 on
p. 222 of [3]). The functor C : �op→� has a canonical lifting Ĉ : �op → �(as).
So the non-commutative circle is the simplicial object in �(as), which is [n] in
dimension n. Since any injective map has a unique lift in �(as), we have only to
define the face maps. If i < n then d−1

i (j) is a singleton for all j except j = i. We
define the total ordering on d−1

i (i) = {i, i + 1} by declaring that i < i + 1. Since
d−1

n (j) is a singleton for all j except j = 0 we need only to define the total ordering
on d−1

n (0) = {0, n}, which is now given by n < 0. It is tedious, but straightforward
to check that in this way we get, in fact, a simplicial object in �(as). Moreover,
this simplicial object is compatible with the unique lift of tn : [n]→ [n], which is
given by tn(i) = i + 1 for i < n and tn(n) = 0. Hence, Ĉ is indeed a cyclic object
in F(as).

1.5. DEFINITION OF HOCHSCHILD AND CYCLIC HOMOLOGY OF FUNCTORS

Now we define the Hochschild homology H∗(F ) of a functor F : �(as) → mod
as the homotopy of the simplicial module F ◦ Ĉ. Similarly, the cyclic homology
HC∗(T ) of a functor T :F(as) → mod is defined as the cyclic homology of the
cyclic module T ◦ Ĉ. Of course, for such T we can also define the Hochschild
homology of T as the Hochschild homology of the composite functor �(as) ⊂
F(as)→ mod.

These definitions generalize the classical definition of Hochschild and cyclic
homology of associative algebras as follows. Let A be a unital associative algebra
and let M be an A-bimodule. One observes that the simplicial module L(A, M)◦Ĉ
is exactly the standard Hochschild complex of A with coefficients in M. Hence,

H∗(L(A, M)) ∼= H∗(A, M) and HC∗(L(A, A)) ∼= HC∗(A).

1.6. FUNCTOR HOMOLOGY

For any small category C we denote by C-mod the category of all covariant functors
from C to mod. Similarly, mod-C denotes the category of contravariant func-
tors from C to the category of K-modules. The categories C-mod and mod-C are
Abelian categories with sufficiently many projective and injective objects. Projec-
tive generators of the category C-mod (resp. mod-C) are the functors Cc (resp. Cc),
c ∈ C, where c ∈ Ob(C) and

Cc := K[HomC(c,−)] and Cc := K[HomC(−, c)], c ∈ C.

Here K[S] denotes the free K-module generated by a set S.
If F ∈ C-mod and T ∈ mod-C one defines a module T ⊗C F as a quotient of⊕
c∈C T (c)⊗ F(c) modulo the relations α∗(x)⊗ y = x ⊗ α∗(y).
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Here α : c→ c′ is a morphism in C, x ∈ T (c′) and y ∈ F(c). It is well known
(see §16.7 of [9]) that the bifunctor

−⊗C − : (mod − C)× (C −mod)→ mod

is right exact with respect to both variables and preserves sums. It is also important
to note that

T ⊗C Cc ∼= T (c) and Cc ⊗C F ∼= F(c).

Moreover, the derived functors of − ⊗C − with respect to each variable are iso-
morphic and we will denote the common value by TorC∗ (−,−).

1.7. THE FUNCTOR b

Let us return to the category of non-commutative sets F(as). For simplicity we
will write Pn and P n instead of F(as)n and F(as)n, i.e.,

Pn := K[HomF(as)(−, [n])].

Similarly, we write P̄ n and P̄n instead of �(as)n and �(as)n. The morphism
di : [n] → [n − 1] of F(as) yields a natural transformation Pn→Pn−1, which
is still denoted by di . We define the contravariant functor b as the cokernel of the
morphism d = d0 − d1 : P1 → P0. We claim that the evaluation of b on the set
[m] can be identified with the free K-module spanned on all total orderings on
{1, . . . , m}. Indeed, the generators of P0([m]) are morphisms of non-commutative
sets [m]→ [0] and this is the same as total orderings of [m]. Similarly, generators
of P1([m]) are morphisms of non-commutative sets [m]→ [1] and can, therefore,
be identified with partitions of [m] into two disjoint subsets (ξ0, ξ1) together with a
total ordering on each of them. The map d maps (ξ0, ξ1) to ξ0

∐
ξ1−ξ1

∐
ξ0, where∐

means the ordered union of ordered sets. Therefore, the cokernel of d consists
of equivalence classes of total orderings of the set [m] and each equivalence class
contains exactly one total ordering of [m] with minimal element 0, and hence the
claim is proved.

We let b̄ be the restriction of b on �(as). Since the morphisms di : [n]→ [n−1]
respect 0 they yield natural transformations: di : P̄n → P̄n−1. Thus we can form the
cokernel of the map d = d0−d1 : P̄1 → P̄0. We claim that this is isomorphic to the
functor b̄. Indeed, we have P̄0([m]) = P0([m]), thus the evaluation of the cokernel
on [m] can be identified with the free K-module spanned by the equivalence classes
of total orderings of [m]. The equivalence relation is similar to the one above. The
only difference is that now partitions (ξ0, ξ1) of [m] satisfy the property 0 ∈ ξ0. But
this has no effect on the quotient.

1.8. THE MAIN THEOREM

The main results of the paper are the identifications of Hochschild and cyclic
homology of functors as derived functors of the tensor product with b̄ resp. b.
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THEOREM 1.3. For functors F : �(as)→ mod and T :F(as)→ mod one has
natural isomorphisms

H∗F ∼= Tor�(as)
∗ (b̄, F ) and TorF(as)

∗ (b, T ) ∼= HC∗(T ).

Proof. We will use the well-known axiomatic characterization of Tor functors.
Thanks to Section 1.7, one has an exact sequence P̄1 → P̄0 → b̄ → 0 in mod-
�(as). Tensoring with F and using the isomorphism P̄i ⊗�(as) F ∼= F([i]) one
obtains that the first isomorphism in question holds in dimension zero. Clearly,
the functors F 
→ H∗F form an exact connected sequence of functors and it is
enough to show that H∗F vanishes in positive dimensions for any projective F .
Thus one only needs to consider functors like F = P̄ k. Proposition 2.2 below
gives the result. Similarly, Proposition 2.5 below shows that the same argument
proves the second isomorphism as well, provided we start with the exact sequence
P1 → P0 → b→ 0 constructed in Section 1.7.

2. Propositions 2.2 and 2.5

In order to prove the statements needed for the proof of Theorem 1.3 we introduce
three families of auxiliary simplicial sets X(k), Z(k) and Y (k) for k � 0.

2.1. THE SIMPLICIAL SET X (k)

Let X(k) be the composite of Ĉ : �op → �(as) and Hom�(as)([k] ,−) : �(as)→
Sets : X(k) : �op → �(as)→ Sets.

PROPOSITION 2.1. The simplicial set X(k) is isomorphic to the disjoint union of
the k! copies of the standard k-dimensional standard simplex �k.

Proof. We will extensively use the fact that the symmetric group �k can be
identified with Aut�(as)([k]). Thus it acts on Hom�(as)([k], [m]) via precomposi-
tion. Thanks to Corollary 1.2 this action is free and hence �k acts freely on X(k).

The zero simplices of X(k) are the maps in �(as) from [k] to [0]; hence they
correspond to total orderings of [k]. The one-dimensional simplices are the maps
from [k] to [1], thus they consist of partitions of [k] say (ξ0, ξ1) with a given
ordering in every part ξi of the partition. The boundary maps take such an ele-
ment to the fusion of the partition but with different orderings (see Section 1.7).
Therefore, given a zero simplex i0 < · · · < ik every zero simplex with a cyclic
variation of this ordering is in the same component and all other elements are
not connected to i0 < · · · < ik. Therefore, any connected component contains
exactly one total ordering with minimal element 0. Thus we can identify the set of
connected components with �k or equivalently with the set of total orderings of
the set {1, . . . , k}.

Furthermore, the induced action of �k on the set of connected components of
X(k) is free and transitive. Thus all connected components are isomorphic to each
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other. Moreover, the set of vertices of each component has exactly (k + 1)!/k! =
(k+ 1) elements. On the other hand, an n-simplex of X(k) is non-degenerate if the
corresponding morphism [k]→ [n] is surjective. Therefore, X(k) is k-dimensional
and the highest-dimensional non-degenerate simplices correspond to isomorphisms
[k] → [k], i.e., to elements in �k . Any other non-degenerate simplex is a (maybe
iterated) face of a such a permutation. Furthermore, the action of �k via precom-
position on the set �k ⊂ X(k)k is free and transitive and we can conclude that in
every component there is exactly one highest-dimensional non-degenerate simplex.

We have only to prove that the connected component X corresponding to the
standard ordering of [k] is isomorphic to the standard k-simplex. To this end, we
let x be the identity map [k] → [k], which is the unique highest-dimensional
non-degenerate simplex of X. Then there is a unique morphism of simplicial sets
�k → X which takes the unique highest-dimensional non-degenerate simplex of
�k to x. Obviously this map is surjective. It is also injective, because the induced
map on vertices is bijective.

PROPOSITION 2.2. For any n � 0 one has

Hi(P̄
n) = 0, i > 0, H0(P̄

n) ∼= b̄([n]).

Proof. Since P̄n is the free K-module on Hom�(as)([n] ,−), we see that H∗(P̄ n)

is nothing but the homology of the simplicial set X(n) with coefficients in K and
the statement follows from Proposition 2.1.

2.2. THE SIMPLICIAL SET Z (k)

We introduce a simplicial set Z(k), which can be described as follows. The set of
m-simplices of Z(k) is Hom�([k], [m]). So, in some sense Z(k) = Hom�([k],−)

is the dual of �k = Hom�(−, [k]). The degeneracy maps si : Z(k)m → Z(k)m+1,
i = 0, . . . , k, are induced from the degeneracy maps si : [m] → [m + 1] in the
simplicial set C. Since the degeneracy maps are non-decreasing, they indeed in-
duce well-defined maps Z(k)m → Z(k)m+1. The same is true for the face maps
d0, . . . , dm−1. Only the last face map dm : [m] → [m − 1] is not monotonic. In
order to define the map dm : Z(k)m → Z(k)m−1 we need a different description of
the set Z(k)m. Let f : [k]→ [m] be a non-decreasing map and let ai be the number
of elements in f −1(i), i = 0, . . . , m. Then k + 1 = a0 + · · · + am and ai � 0.
It is clear that in this way one obtains a one-to-one correspondence between the
elements of Z(k)m and (m+ 1)-tuples (a0, . . . , am) with the properties ai � 0 and
a0 + · · · + am = k + 1. Having this identification in mind, one sees that for the
maps si and dj , i = 0, . . . , m and 0 � j < m one has

si(a0, . . . , am) = (a0, . . . , ai, 0, . . . , am), 0 � i � m

dj (a0, . . . , am) = (a0, . . . , aj + aj+1, . . . , am), 0 � j < m.

We now define

dm(a0, . . . , am) := (am + a0, . . . , am).
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In this way we get a well-defined simplicial set Z(k). Clearly Z(0) is isomorphic
to the circle C. Actually the simplicial set Z(k) is a cyclic set, where the cyclic
structure is compatible with the corresponding cyclic structure on Ĉ and it is
given by

t (a0, . . . , am) = (am, a0, . . . , am−1).

We let |Z(k)|cy be the cyclic geometric realization of Z(k) (see p. 235 of [3]),
which is nothing but the Borel construction of the geometric realization of Z(k)

with respect to the natural S1-action induced by the cyclic structure |Z(k)|cy :=
ES1×S1 |Z(k)|. Let us also recall (see loc. cit.) that the cyclic homology of the cy-
clic module K[Z(k)] is isomorphic to the S1-equivariant homology HS1

∗ (|Z(k)|, K)

of |Z(k)|. In other words

HC∗(K[Z(k)]) ∼= H∗(|Z(k)|cy, K).

LEMMA 2.3. (i) The space |Z(k)| is weakly homotopy equivalent to the circle.
(ii) The cyclic realization |Z(k)|cy has the same homotopy type as

K(Z/(k + 1)Z, 1).

Proof. (i) Since Z(k)0 is a singleton, we see that Z(k) is connected. The
1-simplices of Z(k) are just pairs (i, j) of non-negative integers with i+j = k+1,
while the 2-simplices are triples (a, b, c) of non-negative integers with a+b+c =
k + 1. Hence, the fundamental group is generated by such pairs (i, j) modulo the
relations (a+b, c)(c+a, b) = (a, b+c). It is obvious that this group is an infinite
cyclic group generated by (k, 1). Let f : C → Z(k) be the unique simplicial map,
which sends the unique non-degenerate 1-simplex to (k, 1). By our description of
the fundamental group it is clear that f induces an isomorphism on π1. We have
to show that f induces an isomorphism on homology with local coefficients. Let
M be a module over the ring Z[t, t−1]. The homology of Z(k) with coefficients in
M is defined as the homology of the reduced chain complex C∗(Z(k), M), where
Cn(Z(k), M) =⊕

(a0,...,an) M. Here (a0, . . . , an) corresponds to a non-degenerate
simplex of Z(k), that is a0 � 0, ai > 0, i � 1 and a0 + · · · + an = k + 1. A
typical element of Cn(Z(k), M) is denoted by (a0, . . . , an; x), where x ∈ M. The
boundary map d : Cn(Z(k), M)→ Cn−1(Z(k), M) is given by

d(a0, . . . , an; x) = (a0 + a1, . . . , an; x) +

+
n−1∑
i=1

(−1)i(a0, . . . , ai + ai+1, . . . , an; x) +

+ (−1)n(an + a0, . . . , an−1; tanx).

We let FiCn be the subgroup of Cn(Z(k), M) corresponding to the summands
(a0, . . . , an) with a0 � k + 1 − i. Then the boundary formula shows that FiC∗
is a subcomplex of C∗(Z(k), M). In this way we obtain a filtered complex

F0C∗ ⊂ F1C∗ ⊂ · · · ⊂ FkC∗ = C∗(Z(k), M).
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Clearly

F1C∗ = (M ← M ← 0← · · · )
with only one nontrivial boundary map given by the multiplication on (1− t). Thus
it suffices to prove that the homology of FiC∗/Fi−1C∗ is zero for i � 2. We have

FiCn/Fi−1Cn =
⊕

(k+1−i,a1,...,an)

M

where a1 + · · · + an = i. The boundary map

δ : FiCn/Fi−1Cn → FiCn−1/Fi−1Cn−1

is induced by d. One observes that the first and last summand of d lie in Fi−1Cn−1,
hence they disappear in δ. In particular δ does not depend on the Z[t, t−1]-module
structure on M. We let h : FiCn/Fi−1Cn → FiCn+1/Fi−1Cn+1 be the map given by

h(a0, a1, . . . , an; x) = 0, if a1 = 1

and

h(a0, a1, . . . , an; x) = −(a0, 1, a1 − 1, . . . , an; x) if a1 > 1.

Here a0 = k + 1− i and i � 2. Then hδ + δh = 1 and part (i) is proved.
(ii) By part (i) we know that the integral homology of Z(k) is Z in dimensions

0 and 1 and is zero in dimensions >1. This fact can be seen also by noting that
the simplicial Abelian group Z[Z(k)] is isomorphic to the degree (k + 1)-part of
C∗(Z[x], Z[x]). Here C∗(R, R) denotes the Hochschild complex of a ring R and
the grading of C∗(Z[x], Z[x]) corresponds to the grading of the polynomial ring
Z[x] with deg(x) = 1. It is a classical fact that the Hochschild homology of Z[x]
is zero in dimensions > 1, while

H0(Z[x], Z[x]) = Z[x], H1(Z[x], Z[x]) ∼= Z[x] dx.

Hence, the degree (k+1)-part of it is zero in dimensions >1 and is Z in dimensions
0 and 1, spanned respectively by xk+1 and xkdx. Therefore, the same is true for
the integral homology of Z(k). Moreover, this shows also that Connes’ homomor-
phism B : H0(Z(k), Z)→ H1(Z(k), Z) corresponding to the cyclic space Z(k) is
the multiplication by (k + 1). Therefore, it follows from Connes’ exact sequence
that the integral homology of |Z(k)|cy is Z in dimension 0 and is Z/(k + 1)Z in
odd dimensions. All other homology groups vanish. Furthermore, the fibration

S1 → |Z(k)| → |Z(k)|cy

corresponding to the Borel construction shows that

πi(|Z(k)|cy) = 0, if i �= 1, 2
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and one has an exact sequence

0→ π2(|Z(k)|cy)→ Z→ Z→ π1(|Z(k)|cy)→ 0.

As a consequence we see that π1(|Z(k)|cy) is Abelian and, therefore, it is the same
as the first homology of |Z(k)|cy, i.e., Z/(k + 1)Z. Hence, the map Z → Z is
injective and we obtain π2(|Z(k)|cy) = 0.

2.3. A SIMPLICIAL SET Y (k)

Let Y (k) be the composite of Ĉ and HomF(as)([k] ,−).

�Cop → F(as)→ Sets.

Clearly the cyclic structure on Ĉ yields a cyclic structure on Y (k).

LEMMA 2.4. The underlying simplicial set of the cyclic set Y (k) is weakly homo-
topy equivalent to the disjoint union of k! copies of the circle.

Proof. A similar argument as in Proposition 2.1 shows that the connected
components of the simplicial set Y (k) are in one-to-one correspondence with �k.
Thanks to Corollary 1.2 �n+1 acts freely on HomF(as)([n], [m]) and the set of
orbits can be identified with Hom�([n], [m]). Thus the action of the group �k+1 ⊂
HomF(as)([k], [k]) on Y (k) is free and the orbits form a simplicial set, which is
isomorphic to Z(k). Then the first part of Lemma 2.3 implies the result.

PROPOSITION 2.5. The space |Y (k)|cy is homotopy equivalent to the discrete
space with k! points. Thus HCi (Pk) = 0, i > 0 and HC0(Pk) ∼= b([k]).

Proof. The fibration S1 → |Y (k)| → |Y (k)|cy together with Lemma 2.4 shows
that π0(|Y (k)|cy) is a set with k! elements. Since the group �k+1 acts freely on Y (k)

and the orbits are Z(k) it follows that �k+1 acts also freely on |Y (k)|cy with orbits
|Z(k)|cy . Thus the result follows from the second part of Lemma 2.3.
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