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Abstract

Three definitions for the Hochschild cohomology of schemes are considered and shown to
coincide for quasiprojective schemes. In the smooth case, the associated Hodge spectral
sequences are also shown to be isomorphic.
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Following an idea of Grothendieck [10], Loday [13, 3.4] suggested defining the
cyclic homology of schemes by sheafifying the standard complex and taking hyper-
homology. This idea has been further developed in [6, Section 4], where a similar
definition is also given for Hochschild homology, and in [19]. A closely related
definition for the Hochschild cohomology of schemes was given by Gerstenhaber and
Schack [8] in terms of a categorical cohomology theory.

For the case of Hochschild cohomology, however, there is a much simpler defini-
tion. Recall that if A is an algebra over a field k, the Hochschild cohomology of 4 is
defined to be H"(A4, M) = Extjj<(4, M) where A° = A® , A°® and M is an A-bimodule.
We will be interested in the case where A is commutative (so A° = A®; A)and M is an
A-module,i.e. am = maforae A,m e M. If X is a separated scheme over k, we can just
define the Hochschild cohomology of X, by analogy with the above definition, to be
H"Ox, F) = Extp,, (Ox, %) where # is a sheaf of 0y, x-modules. As above, we will
mainly be interested in the case where & is a sheaf of ¢'x-modules which is regarded as
a sheaf on X x X in the usual way by identifying & with ,% where 6: X - X x X is
the diagonal map. This definition was also studied independently by M. Kontsevich.

One of the main objects of this paper is to show that this definition of Hochschild
cohomology agrees, for quasiprojective schemes over a field, with the one defined by
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Gerstenhaber and Schack and the one defined by the Grothendieck—Loday method.
As a consequence of this we can show that the cyclic cohomology of a projective
scheme over a field with coefficients in a coherent sheaf is finite dimensional.

For each definition of Hochschild cohomology, there is a Hodge spectral sequence
which, in the smooth case, relates the Hochschild cohomology to the Hodge cohomo-
logy of the variety. I will also show that for smooth quasiprojective schemes over
a field, the two Hodge spectral sequences coincide. The Gerstenhaber—Schack Hodge
theory [7] applies to their definition to show that the Hodge spectral sequence of
a smooth projective variety over C degenerates to the Gerstenhaber—Schack Hodge
decomposition of the Hochschild cohomology. It follows that the same is true of the
Hodge spectral sequence corresponding to the elementary definition above. This
provides a partial answer to the problem of giving a geometric interpretation of this
Hodge decomposition. The search for such an interpretation was the original motiva-
tion for the work described here. This result was also obtained independently
by Kontsevich by a completely different method. See the remarks preceding
Corollary 2.6.

In a subsequent paper, I will show how to define Chern classes in Hochschild
cohomology which, for smooth projective varieties over C, coincide with the usual
topological Chern classes under the isomorphism obtained by comparing the
Gerstenhaber—Schack Hodge decomposition with the classical one.

1. Hochschild cohomology

Let X be a separated scheme of finite type over a field k. As indicated above, we
define the Hochschild cohomology of X with coefficients in a sheaf % of Ox-modules
to be H"(Ox, #) = Extg,  (Ox, F).

The composition of functors Homy,, (Ox,—) =I'chom, (Ox,—) leads to the
usual spectral sequence [9]

EY = HP(X x X, exth . (Ox, %)) = Ext] 1 (0x,F) = H?*YOx, F).

Ox xx

Since extg. . (Ox,F) is supported on the diagonal, this can be rewritten as

ES' = H?(X, ext} . (Ox, %)) = H?*9(0x, F), (1.1)

Oxxx

which I will refer to as the Hodge spectral sequence for Hochschild cohomology since
in the smooth case, following [8], we can rewrite it in a form analogous to the usual
Hodge spectral sequence

EY* = H?(X, Q%) = Hi3 *(X,C) (12)

of a complex manifold. This is done as follows.
If & is locally free, we have exts . (Ox,F) = exto . (Ox,Ox)QF.

Ox x x
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If X is smooth, exts. . (Ox,0x) ~ N*T where J is the tangent bundle of X [12].
Let # = Q% where d = dim X. Since Q1® Q977> Q%= and Q'@ \1T - Oy
are dual pairings, we have " ® A\’ ~ Q%77 so, replacing # by X ® F in the

spectral sequence (1.1), we get
EY¥ = HP(X,QV '®@F) = HP (Og, ¥ @ F). (1.3)

Except for the indexing and the presence of A", this resembles the usual Hodge
spectral sequence (1.2).

For a smooth projective variety over C, ordinary Hodge theory shows that (1.2)
degenerates to give the Hodge decomposition H*(X,C) = @, +,-.H?(X, 27). A sim-
ilar result for (1.3) will be proved in Section 2.

2. The hyperext definition

Recall that if 4 is an algebra over a field k, we define 4° = A ®; A and 4°—> A by
a® b — ab. The bar construction on A is defined to be B,(4) = A®,A®"®,A. Itisan
A®-module and B.(4)—> A is a free A®-resolution of A as an A°-module so that the
usual Hochschild cohomology is given by H"(A, M) = Ext’«(4, M) = H"(Hom 4
(B.(4), M)) [16].

Remark. If k is not a field, B.(4) is only relatively projective over A° so that
Hochschild cohomology should be defined as a relative Ext in this more general case

(see e.g. [8]).

If M is an A-module, then Home(B.(4), M) = Hom,(C.(4), M) where
C.(A)=A® 4B.(A) so we have H"(4,M)= H"(Hom,(C.(4),M)). Note that
C,(A)= A®,.A%®" and C.(A) is a chain complex of A-modules. It is, of course, no
longer acyclic.

For our purposes, the following definition of the hyperext will suffice.

Definition. Let o/, be a chain complex of sheaves of @-modules which is bounded
below, ie. &, =0 for n«0. Let ¢ be an @-module, choose an injective resolution
0->% > .#°, and define Extp, («.,9) = H"(Hom, (., #7)).

Standard arguments of homological algebra show that this is well defined and is an
exact d-functor in o/, and in 4. The more general hyperext in which ¢ is also
a complex will not be needed here.

Let X be a scheme over k. Define a presheaf on X by letting C.(U) = C.(I'(U, Oy)).
Let %. be the associated sheaf. It is a sheaf of modules over Ox. The Grothen-
dieck—Loday type definition of the Hochschild cohomology can now be formulated as
follows.
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Definition. Let # be a sheaf of Oy-modules. We define HH*(X, #) = Extg (%.,%).
The following is one of the main results of this paper. It will be proved in Section 10.

Theorem 2.1. Let X be a quasiprojective scheme over a field k. Let & be a sheaf of
Ox-modules. Then there is a natural isomorphism of o-functors H Oy, F) =
HH"(X,%).

A similar definition can be given for cyclic cohomology. Let D.(4) be the total
complex of Connes double complex [15]. As above we sheafify D.(A) getting a com-
plex of sheaves 2, and define HC"(X, %) = Exty (2., # ). One has the usual exact
sequence 0—C,(4)—> D.(A)-» D.(A)[—2]—-0 leading to 0%, -2, .- 2,
[— 2] —» 0 and therefore to Connes’ exact sequence.

. 5> HH" (X, F) - HC" (X, %) » HC"(X, F) » HH"(X,F) > - (2.])

Corollary 2.2. Let X be a projective scheme over a field k. Let F be a coherent sheaf of
O x-modules. Then for all n, HH"(X, %) and HC"(X, ¥ ) are finite dimensional over k.

For HH*(X, %), this follows from Theorem 2.1 since H"(@Ox, #) is clearly finite
dimensional. It then follows for HC"(X, %) by induction on n using (2.1).

Remark. Note that HH" and HC" are 0 for n < 0 in contrast to the homology groups
HH, and HC, [20,1.1].

We can also define a Hodge spectral sequence associated to HH"(X, % ). The
construction can be done quite generally as follows.

Lemma 2.3. Let &/, be a chain complex of sheaves of O-modules which is bounded below.
Then there is a spectral sequence

EY = Exth(H,(.),9) = Exty (., %).

We need only filter Hom(s,,.#°) by the degree of #°. I will refer to this spectral
sequence as the hyperext sequence. In particular, we can take </, = %.. Defining
H#, = H,(¥.), we get the Hodge spectral sequence

EZ = Bxt? (#,, F) = HH?*9(X, F). 2.2)

One of the difficulties in dealing with the complex of sheaves €. is that it is not
quasicoherent in general. There is no problem, however, with #,. We first recall some
standard facts concerning Hochschild homology.

It is well known that Hochschild homology commutes with localization [2,5].
More generally, if A —» B is flat, then B® ,H,(4,M)—=>H, (B,B® M) for any
A-module M [14,1.1.17; 18,9.1.8]. This follows from the fact that Tor commutes
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with flat base change since A°— B° is also flat. In particular, this applies if
Spec A < Spec B is an open embedding of affine schemes.

Write HH,(A) for the Hochschild homology H,(A, A). Most of the following lemma
is contained in [2, Cor. 1; 6, 0.4; IL.8].

Lemma 2.4. (1) The sheaves 3, are coherent.

(2) I'(U, ) = HH (I'(U, Ox)) if U is affine.

(3) If X is smooth, #, ~ Q1 for all q.

(4) If X = Spec A, then 6*B.—=» €. is a homology equivalence where &, is the sheaf
on X x X defined by B,(A).

Proof. The sheaf %, is associated to the presheaf U+ C(I'(U, 0x)) so 5, is asso-
ciated to the presheaf U +— HH (I'(U, 0x)). Suppose that X = Spec A is affine. The
sets X; = Spec A; are a base of open sets and HH (I'(X;, Ox)) = HH(A,) = HH (A)s
by Corollary 2.8. Therefore 5, is the sheaf corresponding to the A-module HH,(A).
This proves (2). Also Tor,fe(A, A) is a finitely generated module over A° and therefore
over A which proves (1). Suppose now that X is smooth. If X = Spec A is affine, then
by [12], we have HH,(4) = A\?HH(A) and HH,(A) = Q. It follows that, for any
affine open set U of X, #,|U = Q| U. Since these isomorphisms are natural, they
patch to give the isomorphism of (3). Finally for (4), note that 4,® ,<B.(4,) = C.(4,)
so that H (6*4.) - H,(%.) is induced by the maps H,(C.(A),)—>H,(C.(4,). O

We therefore get the following Hodge spectral sequence for smooth varieties.
E% = Extg (24, %)= HH? (X, F). (2.3)

Since X is smooth, Q1 is locally free so 9&,’;,((9’1, &) =0forj > 0 and the spectral
sequence Ei=H YX, Ae&é}{(ﬂ“,f ) = Extéj’(ﬂ",g7 ) reduces to an isomorphism
Ext} (Q%, %) = H?(X,hom, (Q% #)). Now hom, (2%, %)= QI®F where we set
Q= hom, (2% Ox). As in Section 1, the dual pairing Q?® Q°"% - " shows that
QRF ~ Q* QA @F so, after substituting F @ # for F, we get the spectral
sequence

E¥ = HY(X,Q "QF) = HH? (X, X @ F) 24

with the same E, and E, terms as (1.3). This leads to our second main result which
will also be proved in Section 10.

Theorem 2.5. If X is a smooth quasiprojective variety over a field k, the spectral
sequences (1.3) and (2.4) are naturally isomorphic. More generally, the spectral sequences
(1.1) and (2.2) are isomorphic if the sheaves ¥, are all locally free.

Remark. The local freeness condition cannot be omitted here. For example, if X is
affine, the E, term of (1.1) is H?(X, exts_. (Ox, F) which is 0 for p # 0, while that of

Oy < x

(2.2) is Extg, (#,, # ) which will only be 0 for all # and all p 0 if 5, is locally free.
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The following result was also proved independently by Kontsevich using quite
different methods. He does not reduce to the theorem of Gerstenhaber and Schack but
instead gives a direct proof by taking the formal completion of X x X along the
diagonal and using complexes of sheaves of differential operators to compute Hoch-
schild cohomology. His method has the advantage of not requiring X to be quasi-
projective.

Corollary 2.6. Let X be a smooth quasiprojective variety over C. Then the spectral
sequence (1.3) degenerates to give the canonical Hodge decomposition of Gerstenhaber
and Schack,

H'(Ox, ¥ ®F)= P HX,Q'‘Q@F).

ptq=n

Proof. It is sufficient to prove this for (2.4). Gerstenhaber and Schack [7] have shown
that there is a Hodge decompasition for Hochschild cohomology in a characteristic 0.
This is obtained from a natural decomposition of the complex C.(A4) into a direct sum
of subcomplexes C.(4) = @ C?(A). This leads to a decomposition H,(4) = Bp+4=n
H,,(A) where H,.(A) is the homology of C¥(4). Using the results of [12], they show
[8] that if 4 is smooth over k then H,,(4) = 0 for g # 0. (Gerstenhaber and Schack
actually do this for Hochschild cohomology but the homology version follows with no
further effort because H,(A4) = Q% is projective so H*(A,A) = Hom,(H,(4),A).)
Therefore the complex %. of sheaves splits into a direct sum €. = PEP where
‘P has non-trivial homology in one dimension only. This leads to a natural
decomposition of the spectral sequence (2.2) into the sequences obtained from the
double complexes Hom(%?,.#°). These have E; = 0 for i # p and so degenerate to
isomorphisms. []

3. The Gerstenhaber—Schack definition

I will show here that the definition of Hochschild cohomology given by Gersten-
haber and Schack [8] agrees with that given in Section 2. We first recall the definition.

Let X be a separated scheme of finite type over k. Let A be the category of affine
open sets of X and inclusion maps. In this section, a presheaf will mean a con-
travariant functor on A (not on the category of all open sets of X). Since A is a base of
open sets and is closed under finite intersection, the usual relations with sheaves on
X still hold, i.e. the category & of sheaves can be identified with a full subcategory of
the category 2 of presheaves and the inclusion i: ¥ < 2 has a left adjoint a: # — &,
the associated sheaf functor. Also a is exact so i preserves injectives.

Let @¢ be the presheaf U s I'(U,0x)®, ' (U,0x) = I'(U,Ox)°. Any sheaf # of
Ox-modules can be thought of as a presheaf over (° using the map
I'(U,0x) - I'(U, Ox). Gerstenhaber and Schack define the Hochschild cohomology
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of F to be Extge(0, F) in the category of presheaves of ¢*-modules. It is easy to see
that this agrees with the definition given in [8, 20.1, 28] except for the terminology
and notation. The next theorem shows that it also agrees with the hyperext definition
of Section 2.

Theorem 3.1. Ext"«(0, #) ~ HH"(X, %).

Proof. Let #. be the chain complex of (¢°-modules defined by U B.(U) =
B.(I'(U, @y)). Each B.(U) is projective over 0°(U) but, in general, 4, is not projective
over 0°. To remedy this, Gerstenhaber and Schack [8, 19, 20] take a further resolution
F. B, of B. which is projective over ¢°. T will use a variant of this construction here.
This, like the &, resolution, can be defined for an arbitrary presheaf of rings /.

As in [8, 19], the functor R:Mod &/ —I1 Mod «/(U) has a left adjoint L. For
a presheaf .# of .&/-modules, we define P(#)= LR(#). Explicitly, P(AWU) =
Uy o v & (U)® 4y # (V). Since R is exact, it follows that P(.#) is a projective
presheaf of o/-modules if each .# (U) is projective over .o/ (U). We have an adjunction
map &:P(#)— A and P(H)U)— .#(U) splits for each U since A/ (U)® 4 w)H#
(U)= #(U) is a summand of P(#)(U). Let Q(.#) be the kernel of & Then
0->Q(A)U)— P(AYU) - #(U)— 0 is split exact for each U. In particular, if all
A (U) are projective, so are all @(.#)(U). By splicing 0 — Q(#) — P(H) - 4 — O,
0— Q*(M)— PQ(M)— Q(M)— 0, etc., we get the required resolution

-« > Py(M)—> P (M)— Po(M) > M >0
where P,(.#) = PQ"(.#). For each U,
-+ = Po(M)U) > P(M)U) - Po(MWU) > A(U) >0
is split exact. Also, if all .#(U) are projective then all P,(.#) are projective. We write

PY(#), etc. if it is necessary to specify the presheaf of rings &. [

Lemma 3.2. If A—> 2% is a map of presheaves of rings, then B® ,P¥(M)—=> P?
(BRsM), BR Q¥ (M) Q¥ (BR M), and BR Py (M)—=> P (B y M) for
all n.

Proof. The first assertion is clear from the explicit form of P since #(U)
QuyZ(U)Quu) A(V)=B(U)Qyw) M (V)= B(U)Raw)B(V)D4w) (V).
The second statement follows from the diagram

0——>2Q®,0" (M) —>BQ P (M) —> BR, M—> 0

]

0—>0*2#Q, M) —>P*BRQ, M)—> BQ, M—> 0.
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Note that the top sequence is exact since its evaluation at each U splits. The third
statement now follows from the first two.

Returning now to the case of (¢°, we see that P.4, is a projective double complex and
its associated total complex is a projective resolution of @y over ¢°. Therefore
Extge(Ox, ) = H*(Homge(P,%4.,%)). Let & — #° be an injective resolution of
sheaves of (@x-modules. Since P4%. is projective, Homg(P.B., %)
—~>Homg(P.%.,.#") (where the symbol — denotes a homology equivalence).
Since s° is a complex of  (Ox-modules, Homme(P‘Deﬂ., F)=
Homy,, (O ®P"RB., I '} = Hom, (P*(Ox ®4¢4.), #°) = Hom,, (PY*(2.), #*) where
9, is the presheaf U — C.(I'(U,0y)). Since .#° is injective as a sheaf and therefore
as a presheaf, and P%™(2.)—»2., it follows that Hom,(2.,°)
—Hom,, (P?*(2.), #°). Now Hom, (2., ") = Hom, (a9., # ") = Hom, (4., "),
where a is the associated sheaf functor. Therefore we have recovered the definition of
HH"(X,#) given in Section 2. [

The Gerstenhaber—Schack Hodge decomposition considered at the end of Sec-
tion 2 clearly agrees with the one given in [8] under this isomorphism. We could also
define a Hodge spectral sequence in the Gerstenhaber—Schack theory by taking an
injective resolution & — #° of sheaves of Ox-modules and filtering Homg(P.4.,.#")
by the degree of #". It is clear that this agrees with the hyperext spectral sequence
constructed in Section 2.

4. Locally free resolutions

The proof of Theorem 2.1 is much simpler in the affine case since we can use the fact
that B,(4) is a projective resolution of A over A°. In the non-affine case, however, it is
not even clear how to define an analogue of B.(4) as a complex of sheaves on X x X.
The proof will therefore be given in three steps. First we consider the case in which
%. is replaced by a sheaf 6*.%, where %, is a locally free resolution of §,0x on X x X.
Secondly, we use standard approximation techniques to generalize to the case where
. is only assumed flat. Finally we use a Cech patching technique to find such
a complex which approximates the bar resolution near the diagonal. In the present
section I will consider the first step. This can be done more generally for a closed
embedding Y < X rather than just for the special case X< X x X.

I will prove first some basic facts used in the proof.

Lemma 4.1. Let /. and &, be chain complexes of sheaves which are bounded below.
Then a homology equivalence </ ,— 4. induces an isomorphism between the spectral
sequences

Ext? (H,(.), %) = Ext} (., %)
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and
Ext? (H,(#.),%) = Ext} 1(#.,%)

of Lemma 2.3. Homotopic maps 4. — %B. induce the same map Ext"(%.,%)—
Ext"(<f., %) and the same map of spectral sequences.

Proof. The first statement is clear from Lemma 2.3. For the second, if A ~ 0, then
h factors through the mapping cone .#, of the identity map of .«.. Since H.(.#.) = 0,
the first statement implies that the spectral sequence for .#, is 0. [J

Lemma 4.2. Let &, be a loclly free chain complex of sheaves and let s/* and %" be
cochain complexes of sheaves. Assume &., /", and #° are bounded below. If of*—> %"
then hom o(&., o' )—>hom ((Z.,#").

Proof. Since %, is locally free, filtering on the degree in .#, gives a map of spectral
sequences which is an isomorphism at the E; level. []

Lemma 4.3. If % is a flat O-module and ¥ is an injective O-module then the sheaf
hom ,(F, %) is injective.

Proof. We have Hom,(.#, hom (%, %)) = Hom,(# ® ,#,%). This is an exact fun-
ctor in .4 by the hypotheses. []

Lemma 4.4. Let o/° and #° be cochain complexes of flabby sheaves which are bounded
below. If of*—=>%" then I'sod*'~—~>TH".

Proof. Let ¢ be the mapping cone of o#*—=>%". Then " is a flabby resolution of the
zero sheaf so H'(I'¢")=0. O

Lemma 4.5, Let i:Y < X be closed. Then hom, (i, %) = i,hom, (i*<Z,RB).

Proof. For any #, we have Hom, (%, hom , (#/,i,%#)) = Hom, (F ®, i, B) =
Hom,, (i*(# ®q, o), B) = Homy,(i*F ®q,i* /), B) = Hom,, (i*F, hom o (i*/, B))
= Hom, (#,ihom . (i*<«/,%#)). O

Proposition 4.6. Let i: Y <> X be a closed embedding. Let &, be a locally free chain
complex on X which is bounded below. Let & be a sheaf of Oy-modules. Then there is
a natural isomorphism of §-functors in &, Extp (£.,i,) = Extp (i*&., ).

Proof. Let ¥ — #°and i, — #° be injective resolutions. Since i, is exact, i, & — i ,#"
is exact and we can find a map i, ¥ — #° over i,&. By Lemma 4.2, hom,,
(Z.,i,)—hom, (£., #°). By Lemma 4.5, the left side is i hom ,, (i*Z., #°). By
Lemma 4.3, we see that hom , (i*%.,.#°) is injective so i, hom , (i*Z., #°) is flabby.
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Also hom, (%.,#°) is injective. By Lemma 44, I'(X, ihom,(*Z.,7°)
—I'(X,hom , (Z., #")). This can be written Hom,, (i*%,, #"))=—Hom,, (Z., #°))
and the result follows by taking cohomology.

If we have a short exact sequence 0 - %' - &% — %" — 0, we can choose exact
sequences of injective resolutions 0 > #" = #° > F" 50,0 "> ¢ - " 40,
and a commutative diagram

0 > g > i*g° >+ g >0

RN

0 ; f’. > j. > f”. >0'

This leads to an exact ladder of cohomology showing that our isomorphism is one of
o-functors. [

Corollary 4.7. Let %, be a locally free chain complex on X x X which is bounded below
and such that Hyo(Z.) = 6,0x and H,(£.) =0 for p#0. Let # be a sheaf of Ox-
modules. Then H"(Ox, ¥ ) = Extp (0*%Z., F).

Proof. The right-hand side is Exty,  (Z.,0,% ) by Proposition 4.6. By Lemma 4.1,
we can replace %, by 0x. [

5. Spectral sequences

In this section I will prove an analogue of Corollary 4.7 for the Hodge spectral
sequences. We first recall some standard results about Cartan—FEilenberg resolutions
[3]. I will use the following terminology. All complexes here are assumed to be
bounded below.

(1) A monomorphism i: 4° — B" of cochain complexes is a CE-monomorphism if
i, H*(A*) > H*(B*) is also a monomorphism.

(2) An exact sequence C"—L C*—£4 C™ is CE-exact if im f— C* is a CE-mono-
morphism.

(3) I' is CE-injective if whenever i:4* — B* is a CE-monomorphism, any 4" —» I
extends to B — I'.

(4) A CE-resolution is a CE-exact sequence 0 » A" - C% — C'* — ... where the
C™ are CE-injective.

If we assume the existence of enough injectives, every cochain complex admits
a CE-monomorphism into a CE-injective complex. Therefore CE-resolutions exist.
The usual mapping theorem shows that any map of cochain complexes A° — B*
extends to a map of their CE-resolutions and this extension is unique up to homotopy.
If F is an additive functor, the hypercohomology spectral sequences of F are defined to
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be the spectral sequences associated to the double complex F(C™) where C* is
a CE-resolution of A° [3]. In the construction of these sequences it is shown that
H{(F(C”)= F(H{(C")) where Hy; denotes the cohomology with respect to the
differential in the complexes C™.

We will mainly be interested here in the case where A® is a cochain complex of
sheaves and F =T which leads to the hypercohomology spectral sequence
H?(X,HY(")) = HP U X, ")

Lemma 5.1. Let ., be a chain complex of locally free sheaves on a scheme Y which is
bounded below and such that H,(A.) is locally free for all q. Let & be a sheaf of
Oy-modules. Then there is a natural isomorphism Hhom ,(A#., S )—>
M@Y(Hq(ﬂ-),y}

Proof. If F is any contravariant left exact functor and C, is a chain complex we
can define a natural map HY(F(C.)) » F(H,(C.)) as follows. If Z} = ckr[C,+, = C,],
then F(Z3) = ker[F(C,)—> F(C;+1)]. Now 0->H,»Z,-»C,_; is exact so
F(Z,)— F(H,) annihilates the image of F(C,-;) and so factors through
ckr[F(Cy-1) = F(Z,)]1 = HYF(C.)). This gives us a natural map H%hom,,
(A.,S)) > hom , (H,(A.), F). It is sufficient to show it is an isomorphism locally.
Locally, .#. is the complex of sheaves associated to a complex M, of projective
modules whose homology is also projective. It is well known that such a complex is
isomorphic to a direct sum of elementary complexes. For example, if M, = O forn < 0,
then M, — H, is onto so we can write M, = M@ H, and split off the complex
0—->Hy—0.If H, =0, then M, - M, is onto so we can write M, = M| ® M, and
split off the complex 0 - M—1> M, — 0. In this way we split .#. (locally) into a direct
sum of complexes of the form 0 — .# — 0 and 0 - .#—».# — 0. The lemma is clearly
true for such complexes. [

Corollary 5.2. If 0 > F' > F - F" >0 is exact and #, satisfies the hypotheses of
Lemma 5.1 then 0 - hom , (A.,%') > hom , (A.,#)—hom o (M., F") -0 is CE-
exact.

Lemma 5.3. Let .#, be a chain complex of locally free sheaves on a scheme Y which is
bounded below and such that H (4.} is locally free for all q. Let & be a sheaf of
Oy-modules. Then the hyperext spectral sequence

Exth (Hy(M.), ) = Exth (M., &)
is isomorphic to the hypercohomology spectral sequence
H?(Y, Hi(hom o,(A., #))) = H?* (Y, hom ¢, (A., %))

of the complex hom o (A., %).
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Note that if & —.#° is an injective resolution then hom, (#.,%)
—~hom, (#.,#") so the hypercohomology sequence of Lemma 5.3 is also the
hypercohomology sequence of hom , (4., #°).

Proof. Let & — #* be an injective resolution of &. Then
0—>homm@,(‘//{.,,7)—»QQ{Q@Y(JI.,JO)—»}&Q@,(J{,,JI)»
is CE-exact by Corollary 5.2. Let hom 4 (4., %) — # be a CE-resolution. Then
there is a map f, unique up to homotopy, making the diagram
home, (A. ,#) ———> homg, (4., 5°)
= S

home, (M., ) ————> #*

commute. Applying I'" gives Homy (., .#*) = I'thom , (A., #*)) > I'(#*). By filter-
ing Homy, (#.,.#°) by the degree of #* we get the first spectral sequence of
Lemma 5.3. The corresponding filtration of I'((#**) gives the second spectral sequence
of Lemma 5.3 so it will suffice to show that the induced map on E, terms is an
isomorphism. This map on the E, terms is Hom,, (H,(#.), # ") = I'(Hy( #°") which is
obtained by applying I' to hom, (H,(4.),#")— Hy(#"). By Lemma 4.3,
hom , (H,(#4.),#") is an injective resolution of hom , (H,(.#.), &). By the properties
of CE-resolutions, Hy;(_#*") is an injective resolution of H4(hom 4, (.#., %)) which is
equal to hom , (H,(#.),¥) by Lemma 5.1. It follows that the induced map of E,
terms is an isomorphism. [J

Lemma 5.4. Let i:Y< X be a closed embedding. Let o/° be a cochain complex of
sheaves on Y which is bounded below. Then the hypercohomology spectral sequences
HP(Y,HY (")) = HP*9(Y, ")
and
HY(X,Hii ) = HP"YX,i ")
are isomorphic.
Proof. Choose CE-resolutions &' — .#" and i,o/" — #. Since i, is exact,

iy — i, S is exact and so is H?(i,/") — Hi;(i,#"). Also there is a map f unique
up to homotopy making the diagram

Iyl ——> ir S

[

il ——> Fo°
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commute. Applying I'(X,-)to f gives I'(Y,#"") = I'(X,i,.#") > I'(X, #°) where the
double complex I'(Y,.#°) gives the first spectral sequence of Lemma 5.4 and the
double complex I'(X, #°) gives the second. It is enough to check that the map of E,
terms is an isomorphism but this map is H?(Y,H%«")) = H?(X,i HY(HL"))
2L HY(X,Hi ). O

Proposition 5.5. Let i: Y < X be a closed embedding. Let . be a locally free chain
complex on X which is bounded below. Assume that Ho(Z.) = 7 and H,(£.) =0 for
g # 0. Suppose also that H (i*<%.) is locally free on Y for all q. Let & be sheaf of
Oy-modules. Then the spectral sequences

+

Ext? (H,(i*%.), %) = Ext2 (i* £,, &)

and
H?(X, ext? (7 ,iy, &) = Ext U7, i*¥)

are isomorphic.

Proof. The second spectral sequence is the one associated to the composition of
functors Hom,, (7,-) = I'thom , (,-)) applied to i,&. Therefore if i, — #" is an
injective resolution of &, then the second sequence is the hypercohomology spectral
sequence of the complex hom , (7, #°). Let #,= &L, forn >0, M, = Z(Z.), and
M,=0 for n<0 Then &L <& #-—57 so hom,(Z.,#)—>hom,
(A., 7 )——hom, (7, #°). Therefore these complexes have the same hypercohomol-
ogy spectral sequence. Let & — .#° be an injective resolution on Y. Since i, is exact,
i — i, is exact and we can find a map i,.¥" — ¢ over i ,&. This map is clearly
a homology equivalence and 2. is locally free SO
hom , (&Z.,i,#")—>hom, (&Z., #°). By Lemma 4.5, hom ,(%.,i,.# ") ~ i,hom ,,
(i*%.,#"). The second spectral sequence of Proposition 5.5 is isomorphic to the
hypercohomology spectral sequence of this which, by Lemma 5.4, is isomorphic to the
hypercohomology spectral sequence of the complex hom, (i*%.,.#°) on Y. By
Lemma 5.3 this is isomorphic to the first spectral sequence. []

Corollary 5.6. Let X be a separable scheme of finite type over a field. Let . be a locally
free chain complex on X x X which is bounded below. Assume that Hy(¥.) =~ 6,0y and
H,(£.) = 0for q # 0. Suppose also that H,(6*<%.) is locally free on X for all q. Then the
Hodge spectral sequences

Ext] (H(6*Z.), F) = Ext} (6*%.),F)
and

HP(X’ 9&‘1 (@X"g’—)):Hp+q((9X,'g’—)

mXXX

are isomorphic.
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6. Flat resolutions

In this section we show that the local freeness hypothesis on %, in Sections 4 and
5 can be replaced by a flatness condition. We begin with some well-known results on
approximating complexes by locally free ones.

Lemma 6.1. Let X be a quasiprojective scheme over a field. Let F—»%9 be an
epimorphism of quasicoherent sheaves of Ux-modules. If 9 is coherent, then there
is a locally free & and a map ¥ — F such that the composition ¥ > F -9 is
an epimorphism.

Proof. By [11, Ch.II, Ex. 5.15¢] & is a filtered union of coherent subsheaves. One of
these will map onto % so we can assume that & is coherent. Extend # to a projective
closure of X [11, Ch. IL, Ex. 5.15]. If # (n) is the usual Serre twist of %, then % (n) is
generated by global sections for n>>0 [11, Ch. II, Cor. 5.18] so we have an epimor-
phism Ox(— n*»#. [

Lemma 6.2. [1,1.2.10, I1.1.1(c)]. Let . be a chain complex of quasicoherent sheaves on
a quasiprojective scheme. Assume that X, is bounded below. Suppose that H;(X) is
coherent for all i. Then there is a chain complex ¥. of locally free sheaves, also bounded
below, and a homology equivalence ¥,— A.

Proof. Suppose that #; has been constructed for i<p in such a way that
H(&.)—> Hy(A.) is an isomorphism for i<p and is onto for i=p. Then
Z,(#.) - Z,(A.)—> Hy(A.)is onto where Z denotes the sheaf of cycles. Let 2 be the
pullback in

P——>>Z, (&)

|

Hyy —> Z(H2).

Since Z ,(£.) maps onto H,(X"), it is easy to check that the cokernel of # — Z ,(£.)
maps isomorphically to H,(X.) and the image #, of # - Z,(¥.) is coherent. By
Lemma 6.1 we can find a locally free &,.; and a map &,., > % so that
im[Z,.1 > Z,(£.)] =%, By Lemma 6.1 choose £} locally free with £, -
Zy i (A) > Hyp (X)) onto. Let £y =L 1®FLp+1 and map it to &, by
L1 P-o>Z(L)> %, and by 0 on Fp,y. Let £,y map to Hpyq by
L1 P oA p1and £y = Z, 1 (XH.) —> A p. . This satisfies our conditions for
p + 1 so we can iterate the construction. []

Lemma 6.3. Suppose we have two homology equivalences ' ——> A, and ¥\ —> A
which satisfy the conclusions of Lemma 6.2. Then there is a chain complex £ . of locally
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free sheaves which is bounded below and a diagram of homology equivalences

Lo —> L

|

L — A,

which commutes up to homotopy.

Proof. Let .#. be the mapping cone of the identity map of .. After a shift of
dimension we have an epimorphism #,—~%.. Let %. be the kernel in
0% ->Y DL ©M —H,—0. Then 4— .. By Lemma 6.2, we can find
L. —=39%.. The diagram

L —

|

L' d M —> A,

commutes. Since .#, is contractible, the diagram obtained by omitting .#. is com-
mutative up to homotopy. [

Lemma 6.4. Let [ : %, — %, be a map of chain complexes of sheaves over a sheaf of rings
. Assume that F, and 9. are bounded below and that &, and ¥. are flat over /. Let
o/ =B be a map of sheaves of rings. If f is a homology equivalence, then so is
19 f BRASF. > BR,Y..

Proof. Let .#, be the mapping cone of f. Let .#; = Ofor i < pso that .#, has the form

> Mps1— Mp,—0. Break .#. into short exact sequences 0-Z,,.; —
My 1> M,—0,05Z,, 5> My, Z,, 1 —0,etc. Induction shows that all Z; are
flat over .« so we can tensor these sequences with 4 and reassemble them to see that
H.(«QZ@&I«/”.) =0 O

Proposition 6.5. (1) Let X be a quasiprojective scheme over a field. Let %, be a flat chain
complex of quasicoherent Oy, x-modules which is bounded below. Assume that
Hy(%.) = 06,0x and H)(%.) =0 for ¢ # 0. Then HOx, ¥ ) = Ext} (0*%9., F).
(2) Suppose also that H,(6*%9.) is locally free for all q. Then the spectral sequences
Ext} (H,(0*9.), F) = Ext}, '(6*%.), F)
and
HP(X, exto, . (Ox, F)) = HP 7 4(0x, F)

are isomorphic.
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Proof. By Lemma 6.2 we can find a locally free complex .#. with ¥ —5%,. By
Lemma 6.4, 6*%.—>6*%,. Therefore, by Lemma 4.1 and Corollary 4.7,
Extp, (0*9., F ) Extp (0* Y., F) = H'(O,, F). If we choose a different ¥ —- 9.,
Lemma 6.3 shows that we get the same isomorphism. The same argument applies to
(2) using Corollary 5.6. [

The special case of Theorems 2.1 and 2.5 where X is affine follows immediately from
this.

Corollary 6.6. Let X = Spec A be an affine scheme of finite type over a field. Then
Theorem 2.1 holds for X. If X is smooth, Theorem 2.5 also holds.

We need only take 4. to be the complex 4, defined in Lemma 2.4(4).

Remark. If & =M~ for an A-module M, then H"(Ox,% )= H"(4,M) and the
Hodge spectral sequence (1.1) degenerates to an isomorphism I'(exty (Ox, F)) =
H"(A, M). This follows from the standard fact that on an affine scheme Y = Spec B we
have Extg (M ~,N ™) = Exty(M, N). Also, if B is noetherian and M is finitely gener-
ated, then extp (M ~, N~ )= Extp(M,N)~ which is quasicoherent.

7. Sheaf theoretic lemmas

I will recall here a few fairly general facts about sheaves on schemes which will be
useful in the proofs of Theorems 2.1 and 2.5. Presumably they are all well known.
The following lemma will be needed to verify the flatness assumptions of Section 6.

Lemma 7.1. Let M be a presheaf of modules over the presheaf of rings R. Let # and
AR be the associated sheaves. If M(U) is flat over R(U) for all open sets U then 4 is flat
over A.

Proof. We first observe that if N is another presheaf of modules over R with
associated sheaf 4" then .#®g4. 4" is the sheaf associated to the presheaf
U MU)®rwyN(U). This is easily checked by showing that the map
M®gN — # ®54" induces an isomorphism of stalks. The functor .# ®4— is right
exact in any case. By the above remark, .# ®5;% is the sheaf associated to the
presheaf U —» M(U)®gw) ' (U, ). This functor is left exact in # and therefore so is
M@aF. [

We will also need the following simple observation.

Lemma7.2. Let f:X — Y be aflat affine morphism. Let & be quasicoherent and flat on
X. Then f, & is flat (and quasicoherent) on Y.
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Proof. We can clearly assume that Y and therefore X is affine so we can write
f:Spec B - Spec A. Let # correspond to the B-module M. Then f,% corresponds
to M considered as an A-module. Since M is flat over B and B is flat over 4, M is flat
over A. [

Lemma 7.3. Let f:X — Y be an affine morphism. Then f, preserves quasicoherent
sheaves and f,:q-Coh(X) — g-Coh(Y) is exact.

Remark. In particular, this applies if Y is separated and X is an open set of Y.

Proof. The assertion is local on Y so we can assume that Y is affine. Therefore f has
the form f :Spec B — Spec A. If # in ¢q-Coh(X) corresponds to the B-module M, then
J+(F) corresponds to M considered as an A-module. The assertion is obvious in this
case. [J

Lemma 74. Let

l' lf
s—92 58

be a cartesian diagram with f affine. Then there is a natural isomorphism
9*f—>fxg*:q-Coh(X) — q-Coh(S’).

Proof. The base change map g*f, — f,.g'* is defined for any commutative diagram. Its
construction commutes with localization on S and ', i.e. if S and §’ are replaced by
U and U’ where g(U’') c U and X and X' are replaced by f~}(U) and f'~*(U’).
Therefore we can assume that S and S’ are affine so the diagram takes the form

Spec B’ g Spec B

l | lf
Spec A" —% 5 Spec 4.

If # corresponds to the B-module M, then g*f, #F — f,g'*# corresponds to the
map of A-modules A’ ® M — B'®pM. Since the diagram is cartesian, B’ = A'® 4B
sO0 B @M = A ®,BRgM = A'® 4M as required. [

The following is a very simple case of flat base-change. Note that the maps i
and j here are open embeddings so the functors i* and j* are just restrictions to an
open set.
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Lemma 7.5. Let f:X — S and let U be an open set of S. Consider the following
cartesian diagram.

[ O—L-sx
g lf

U——>S8S.

If # is a sheaf on X then i*f, & = g, j*% on U.

Proof. If W is an open set of U, one calculates immediately that I'(W,i*f %) =
[(f7'W,F)=T(W,g,j*%). O

8. Presheaves of sheaves

In Section 9 we will consider the Cech complex of alternating cochains for
presheaves with values in an abelian category, specifically, in a category of sheaves.
This idea occurs in [11, Ch. III, Section 4] which was the inspiration for most of this
section. Since this is not a very familiar situation, I will review here the few facts
needed.

Let Q be a presheaf on a topological space X with values in an abelian category /.
If V = U, the notation p:Q(U)— Q(V) will denote the restriction map. Let
U = {U,};c; be a finite open covering of X. Assume that the index set I has been
simply ordered. Define U;...; = U; n ---nU; and let C"(%, Q) = [Ti,< ... <i, Q(Uj,...5,)-
Let p;,..;,:C(%,Q) = Q(Uj,...;,) be the projection. Define £:0(X)—> C°(#,Q) by
pee=p:0(X)—Q(U). Define 6,:C"(@,0)>C™* @, Q) by pi.y,, o0, =
poPiy i, i, Where p:Q(Ui ..5..5, )= QUi ...;). Define d=Y(—1)6,. Then
dd =0 and de = 0. To see this we can apply the embedding theorem for abelian
categories [4, 17] to reduce to the classical case of presheaves of abelian groups. If
& is a category of sheaves we can just use the stalk functors in place of the embedding
theorem.

It will be convenient to extend the definition of the projections by letting p; ...;, =0
if i, = i, for some p # v and defining p,;, ... .;, = sgn(0)p;,...;, for any permutation ¢ of
{io -+ in}.

Suppose ¥~ = {V;};, refines %. Choose a:J — I such that V; c U,(;, and define
a*:C"(%,Q) —» C'(¥", Q) by requiring p;, ... ; °0* = p o Pajo)-atiy Where p:QUs oy -2t
— Q(Vj,...;,). Then, as above, we can check that a* is a cochain map and commutes
with &.

In particular, if ¥ = % and J = I with a different ordering, we can choose o = id
and one verifies immediately that «* is an isomorphism. Therefore, up to isomor-
phism, the complex C*(#, Q) is independent of the ordering.
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Lemma 8.1. Suppose that U; = X for some i€ I. Then

0-Q0(X)—=>C°, 09— CH (U, Q) -
is exact.
Proof. We can assume that i=0 is the least eclement of I. Define
S:C"%,Q) - C"(%,Q) as follows. If i; < --- <y, let p;..;>S=0if iy =0. If
iy >0,let p; ...; ©S = poy, ...;,- Note that Q(Uy;, ...;,) = Q(U, ...;,) so there is no prob-

lem with restriction. One checks easily, as before, that dS + Sd = 1 in positive degrees
and that dS + Sd = 1 — gpg in degree 0. [

We now consider a specific example from [11, Ch. III, Section 4].
Definition. If # is a sheaf on X we define a presheaf Px# on X with values in the
category of sheaves on X by PyxF {U} = iy«if(#) where iy: U< X. Similarly, if
WcVcXletPoF{W}=j(F|W)wherejWcV.

Note that I'(W,Px F {U})=T'(Un W,g?) soif V < U, restriction from Un W to
VAW gives us a map PxyF {U} - PxF {V}.

Lemma 8.2. If V < X is open then PxF {U}|V = P, F{UnV}.

Proof. This is an immediate consequence of Lemma 7.5 taking f and i to be the
inclusion maps of U and V in X. [

Now let % = {U,},; be a finite open covering of X. If V is an open set of X we write
UNYV ={UinV}.

Corollary 83. C'(%,PxF)|V =C'(UNV,Pv F).
The following is proved in [11, Ch. III, Lemma 4.2].

Lemma 84. If % is a covering of X then H°(C(%,PxF))=% and
H{(C(%,PxF)) =0 fori+#0.
In other words we have an exact sequence
0— F—2s COU, PxF) - C (U, Px F) > -
where ¢ is induced by the maps # = PxF {X} —» PxZ {U;}.
Proof. It is sufficient to show the exactness locally since all terms are sheaves on X. If

V lies in some set of % then Lemma 8.1 applies to # nV, so by Corollary 8.3 the
restriction of our sequence to V is exact. []
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Corollary 8.5. If #° is a cochain complex of sheaves then ¢: F " — C' (U, Px F ot is
a homology equivalence.

Proof. Filter C*(%, Px#") by the degree of Py # " and filter #* by degree. By Lemma
8.4, EYY(F*) > E{YC'(U,PxF*)) is an isomorphism. If % has d + 1 sets then
CP(%,-) = 0 for p > d so the spectral sequence converges and the result follows. [

Note that & is not required to be bounded below here because # is finite.

Lemma 8.6. Let % = {U,} be a finite open covering of X. Let M* and N" be cochain
complexes of presheaves. If M*(U)—— N*(U) is a homology equivalence for all U then
s0is C'(U,M)—> C(U,N").

Proof. Filter by the degree of C*(%,-). The resulting spectral sequences have E}%-
terms C?(%, HY(M")) and C?(%, H4(N")) so the map of E,-terms is an isomorphism. As
in the proof of Corollary 8.5, the spectral sequences converge and we are done. []

9. The Cech patching trick

Let X be a quasicompact separated scheme. Suppose for each affine open set
U c X we are given a sheaf &y, of 0y-modules. Suppose also for V = U we are given
puov:FLulV = S such that pyy = id and pyw = pyw(pyv| W)W < V < U. If the
puy are isomorphisms, we can patch the sheaves &, together to get a sheaf of
Ox-modules. If the &y are complexes and the pyy are just assumed to be homology
equivalences, we will construct a similar patching up to homology equivalence using
the method of Lemma 8.4.

As in Section 8, let Px ¥ {U} = jyuSy where jy:Uc— X. Then I'(W, Py & {U}) =
TrUnW,%y). If VcU, we define Px¥{U}—>Px¥{V} to be given by
TUnNW, %) > T(VAW, Sy |V)LT(VAW,%y). This makes U PyF{U}
a presheaf. We recover the situation of Section 8 if &y = %|U for a sheaf of
Ox-modules . If W c V < X, we define similarly P,{W} =j,%w where
JWeV,

Lemma 9.1. Ifthe &,y are chain complexes of quasicoherent sheaves of Oy-modules and
each pyy: L.V - Ly is a homology equivalence, then there is a natural homology
equivalence Px¥.{U }| V-5 P F{UNV}.

Proof. Applying Lemma 7.5 to

Uuny—su
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shows that PyS{U}|V = i*j(Yw) =jx(Lw|UNV)Lsj(FLivv) = B L{UNTV}
By Lemma 7.3, this is a homology equivalence.

Let % be a finite open affine covering of X and consider the double complex
C'(%,Px&.). The total complex of this is well behaved since # is finite.

Corollary 9.2. Let %, be as in Lemma 9.1. Then there is a natural homology equivalence
of total complexes C'(U, PxF )|V C(UNV,PpS.).

Proof. Let I={ip,...,iy and U =U, ;. Then C"%Px%)|V =
[MPx S AU | V—S[Py L {UinV} = C UV, Py ¥.) by Lemma 9.1. Therefore we
get an isomorphism of E;-terms. []

If V is affine, we have an augmentation ¢: Py £ {V} = Sy » COUNV, Py &L.).

Lemma 9.3. Let &, be as in Lemma 9.1 and let V be an affine open set of X. Then
£ Sy > C(UNV,Py %) is a homology equivalence.

Proof. As in the proof of Lemma 8.4, it is enough to prove this locally. Let W be an
affine open set lying in some set of the covering %. Then we have

F\W —— C(UNV, B, L)W

Sy ——> C(UNW, B, &).

The bottom arrow is a homology equivalence, since if we filter C*(% N W, Py <. and
Z.w by the degree of &, we get an isomorphism of E,-terms by Lemma 8.1. [

Remark. The homology equivalences &£y —C'(#nV,Py %) <—C(U,Px LIV
show that C*(#, Px%.) does give the required patching up to homology equivalence.

These results apply in particular to the sheaves ., = C.(I'(V,0y))~ on
a quasicompact separated scheme X. The condition that &, |V — .- be a homology
equivalence is satisfied since I'(V,0y) ®rw.0,) C.(I'(U, Oy))—> C(I'(V,0y)) by the
remarks preceding Lemma 2.4.

Let €. be the sheaf on X associated to the presheaf U — C.(I'(U, 0x)). If U is affine,
we have a map &,y = C.(I'(U,0x))~ — %.|U induced by the maps C.(I'(U, Ox)); —
C.(I'(U,, 0x)) where Ug < U is the open set where s is invertible. By Lemma 2.4(4)
applied to U, &.y-=5%.|U is a homology equivalence.

Lemma 9.4. If% is a finite open affine covering of X then C*(U,Px &.) > C (%, Px%.) is
a homology equivalence.
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Proof. The obvious approach, applying Lemma 8.6, fails because %. is not
quasicoherent so we cannot apply Lemma 7.3 to show that PxZ.{U} =
JjeFLw—je(€.|U) = Px%.{U} is a homology equivalence. Instead we proceed as
follows. It will suffice to show that C*(%, Px%.)|V — C (%, Px%€.)|V is a homology
equivalence for all affine open V which are contained in some set of %. We have, by
Corollary 9.2, Lemma 9.3, Corollary 8.3, and Lemma 8.4,

C(U PSSV —— C(U, BE)V

C*UNV,B, #)— C*@NV,F,6.)

Ky = > 6.V

and the result follows. [

10. Proof of the main theorems

Let X be a quasicompact separated scheme over a field k. If U = Spec A4 is an affine
open set of X then U x U = Spec A% Let 4., be the complex of quasicoherent sheaves
on U x U associated to the complex of A°>-modules B.(4). Then %.y is a resolution of
dy+ 0Oy by flat quasicoherent sheaves of Oy, y-modules. By Lemma 2.4, we have a map
0 B.v—— ¥€.|U which is a homology equivalence. The aim is to patch together the
sheaves 4. (up to homology equivalence) to produce a global complex having similar
properties. We do this by a variant of the construction of Section 9.

Define £.{U} = i, B.y where i: U x U= X x X. Note that &,{U } is quasicoherent
by Lemma 7.3. If U and V < U are affine, the map B.(I'(U, Ox)) —» B.(I'(V, O))
induces a map &.y|V x V > B.y. Therefore, we get £.{U} > &.{V} and it is easily
verified that &. is a presheaf on the category of affine open sets of X (with values in the
category of sheaves on X x X). Let % be a finite affine open covering of X and define
F.=C(U,8.). Let Z.y be the sheaf associated to C,(I'(U, Ox)) as in Section 9. Since
C.(A)= A® 4B.(A) we have ¥.; =3d}B.y and therefore Py (U} =j,Fv=
Jx 08By

By Lemma 7.4 applied to the diagram

U205 UxU

o

X —2 s XxX

we see that j, 0} B.y = 6*i,B.y = 6*6.{U}. Therefore 6*€.{U} = Px&.{U} and
Lemma 9.4 shows that C* (%, §*&.) —» C'(#%, Px%.) is a homology equivalence. Since
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% is finite, it is clear that C'(%,6*8.) = 0*C'(%,8.) = 6*%.. By Corollary 8.5,
%.—> C (%, Px%.) is a homology equivalence. Let &, denote the total complex of
Z: and let 4. denote the total complex of C'(%, Px%¥.). We now have homology
equivalences 6*%, - ¥, «—%.. Therefore, H (6*#.) = H,(¥.) = #,.

Now £.y — 6y«(0y) is a homology equivalence and therefore, by Lemma 7.3, so is
EAU} =i 0u+(Oy). Also i, dy«(Oy) = 84j,(Oy) = ,PxOx{U}. By Lemmas 8.6 and
8.4, we get homology equivalences . = C'(%,8.) > C (¥, 6, Px0x) <<—0,0x show-
ing that Hy(#.) = 6,0y and H{(#.,) = 01if i # 0. Now £, is flat on X x X since .y is
flat and therefore &.{U} is flat by Lemma 7.2. By Proposition 6.5(1) we have, for
a sheaf of Ox-modules 4, H"(Oy, #)=[Extp (6*F., #). Therefore
H"(Ox, M) = Ext} (¥., #) using the homology equivalences 6*#, - ¥, «£—%.. This
proves Theorem 2.1.

For Theorem 2.5, H,(6*#.) =~ #, is locally free by hypothesis so Proposition 6.5(2)
shows that the spectral sequences

+

Ext? (H,(0*%.), M) = Ext5 Y6*F., M)

and
H?(X, exto,, (Ox, M)y = H " Oy, H)

are isomorphic. Using Lemma 4.1 and the homology equivalences 6*#, —» 4. «£—%.
again we see that the first spectral sequence is isomorphic to

Ext} (#,, #) = Exty (4., H),

proving the theorem.

The resulting isomorphisms are independent of the choice of the covering #. To see
this, it is sufficient to compare % with a refinement ¥". In this case we have a map
C(#,-) - C'(¥,-) which is compatible with ¢ We have %, =C(%,8.)> %!

=C(¥,6.),and 4, = C'(U,Px%.) > 9. = C' (¥, Px%.). This gives us a commutative
diagram

from which it follows easily that the isomorphism is the same for # as for ¥".

References

[1] P. Berthelot, A. Grothendieck, L. Illusie et al., Théorie des Intersections et Théoréme de Riemann-
Roch, SGAG6, Lecture Notes in Mathematics Vol. 225 (Springer, Berlin, 1971).

[2] J.-L. Brylinski, Central localization in Hochschild homology, J. Pure Appl. Algebra 57 (1989)
1-4.

[3] H. Cartan and S. Eilenberg, Homological Algebra (Princeton Univ. Press, Princeton, NJ, 1956).



80 R.G. Swan/Journal of Pure and Applied Algebra 110 (1996) 57-80

[4] P. Freyd, Abelian Categories: An Introduction to the Theory of Functors (Harper and Row, New
York, 1964).

[5] S. Geller, L. Reid and C. Weibel, Cyclic homology and K-theory of curves, J. Reine Angew. Math. 393
(1989) 39-90.

[6] S. Geller and C. Weibel, Etale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66
(1991) 368-388.

[7]1 M. Gerstenhaber and S.D. Schack, A Hodge type decomposition for commutative algebra coho-
mology, J. Pure Appl. Aigebra 48 (1987) 229-247.

[8] M. Gerstenhaber and S.D. Schack, Algebraic cohomology and deformation theory, in: M. Hazewinkel
and M. Gerstenhaber, Eds., Deformation Theory of Algebras and Structures and Applications
(Kluwer, Dordrecht, 1988) 11-264.

[97 A. Grothendieck, Sur quelques points d’algébre homologique, T6hoku Math J. 9 (1957) 119-221.

[10] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. IHES 29 (1966)
351-359.

[11] R. Hartshorne, Algebraic Geometry (Springer, Berlin, 1977).

[12] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans.
Amer. Math. Soc. 102 (1962) 383-408.

[13] J.-L. Loday, Cyclic Homology: a survey, Banach Center Publications (Warsaw), Vol. 18 (1986)
285-307.

[14] J.-L. Loday, Cyclic Homology, Grund Math. Wissen, Vol. 301 (Springer, Berlin, 1992).

[15] J.-L. Loday and D.G. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment.
Math. Helv. 59 (1984) 565-591.

[16] S. Mac Lane, Homology (Springer, Berlin, 1967).

[17] B. Mitchell, Theory of Categories (Academic Press, New York, 1965).

[18] C.A. Weibel, An Introduction to Homological Algebra (Cambridge University Press, Cambridge,
1994).

[19] C.A. Weibel, Cyclic homology for schemes, Proc. Amer. Math. Soc., to appear.

[20] C.A. Weibel, The Hodge filtration and cyclic homology, to appear.



