
Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 1

Lecture 4.
Combinatorics of the category Λ: cohomology of Λ and Λ≤n, periodicity,
classifying spaces. Fibrations and cofibrations of small categories; Λ∞ as
a fibered category over Λ.

4.1 Cohomology of the category Λ and periodicity.

In the last lecture, we have shown that the homology H q(Λ, E) with coefficients in some cyclic
vector space E ∈ Fun(Λ, E) can be computed by the standard complex (3.2); in particular, we have
the periodicity map u : H q+2(Λ, E) → H q(Λ, E) and the Connes’ exact triangle

H q(∆opp, j∗E) −−−→ H q(Λ, E)
u−−−→ H q−2(Λ, E) −−−→ ,

where j : ∆opp → Λ is the embedding defined in the last lecture. Today, we want to give a more
invariant description of the periodicity map. That such a description should exist is more-or-less
clear. Indeed, homology H q(Λ,−) — or rather, hyperhomology H(Λ,−) — is a functor from the
derived category D(Λ, k) of the abelian category Fun(Λ, k) to the derived category D(k -Vect). By
definition, this functor is adjoint to the tautological embedding D(k -Vect) → D(Λ, k), k 7→ kΛ, so
that by Yoneda Lemma, every natural transformation H q+2(Λ,−) → H q(Λ,−) should be induced
by an element in

Ext2(kΛ, kΛ) = H2(Λ, k).

Thus to describe periodicity, we have to compute the cohomology H
q
(Λ, k) of the category Λ with

constant coefficients k = kΛ ∈ Fun(Λ, k).
The computation itself is not difficult: since the category Λ is self-dual, the complex (3.2) has

an obvious dualization, and exactly the same argument as in the proof of Lemma 3.2 shows that
dualized complex computes H

q
(Λ, E) for any E ∈ Fun(Λ, k). For the constant functor k, this gives

(4.1) H
q
(Λ, k) ∼= k[u],

where, as before, k[u] means “the space of polynomials in one formal variable u of degree 2”. It is
only slightly more difficult to see that the isomorphism (4.1) is an algebra isomorphism, and the
action of the generator u ∈ H2(Λ, k) on homology H q(Λ,−) is the periodicity map. One can argue,
for instance, as follows. The same operation of “shifting the bicomplex by two columns” induces a
periodicity map H

q
(Λ, E) → H

q+2(Λ, E); this map is functorial, thus (1) induced by an element in
H2(Λ, k), and obviously the same one, and (2) compatible with the algebra structure on

H
q
(Λ, k) = Ext

q
(kΛ, kΛ),

so that H
q
(Λ, k) must be a unital algebra over the polynomial algebra k[u] generated by the

periodicity map. Since by (4.1), it is isomorphic to k[u] as a k[u]-module, it must also be isomorphic
to k[u] as an algebra.

However, it will be useful to have a more explicit description of the generator u ∈ H2(Λ, k).

To obtain such a description, we use the topological interpretation of the category Λ — in other
words, we treat [n] ∈ Λ as a wheel formed by marking n points on the circle S1. Note that this
defines a cellular decomposition of the circle: its 0-cells are vertices v ∈ V ([n]), and its 1-cells
are edges e ∈ E([n]). Denote by C q([n]) the corresponding complex of length 2 which computes
the homology H q(S1, k). Any map f ∈ Λ([n], [m]) induces a cellular map S1 → S1, or at any
rate, a map which sends 0-skeleton into 0-skeleton, and thus induces a map C q([n]) → C q([m]).
In this way, C q([n]) becomes a length-2 complex of cyclic vector spaces. Since the homology of
the circle Hi(S

1, k) is equal to k for i = 0, 1 and 0 otherwise, and does not depend on the cellular
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decomposition, the homology of the complex C q ∈ Fun(Λ, k) is kΛ in degree 0 and 1, and 0 in other
degrees. Thus we have an exact sequence

(4.2) 0 −−−→ kΛ −−−→ C1 −−−→ C0 −−−→ k −−−→ 0

of cyclic vector spaces. Explicitly, V ([n]) ∼= Λ([1], [n]), so that C0([n]) = k[V ([n])] = k[Λ([1], [n])],
and C0 is canonically isomorphic to the representable functor k[1]. As for C1, we have by definition

C1([n]) = k[E([n])] = k[Λ([n], [1])],

and the map C1(f) : C1([n]) → C1([m]) corresponding to a map f : [n] → [m] is given by

(4.3) C1(f)(e) =
∑

e′∈fo−1(e)

e′ ∈ k[E([m])]

for any edge e ∈ E([n]), so that C1 is canonically identified with the corepresentable functor k[1].
All in all, the exact sequence (4.2) can be rewritten as

(4.4) 0 −−−→ kΛ −−−→ k[1] −−−→ k[1] −−−→ kΛ −−−→ 0.

This represents by Yoneda a certain class in H2(Λ, k) = Ext2(kΛ, kΛ).

Lemma 4.1. The class u′ ∈ H2(Λ, k) represented by (4.4) is equal to the periodicity generator u.

Proof. Let us first prove the equality up to an invertible constant. To do this, it suffices to prove
that the cone of the map H q+2(Λ, k) → H q(Λ, k) induced by u′ is isomorphic to k in degree 0 and
trivial in other degrees. This cone is the hyperhomology H(Λ, C q). Since C0 = k[1] is representable,
it already has all the homology we want from the cone, so that we have to prove that

H q(Λ, C1) = H q(Λ, k[1]) = 0

(in all degrees). Denote by M the kernel of the natural map k[1] → kΛ, so that we have short exact
sequences

0 −−−→ M −−−→ k[1] −−−→ kΛ −−−→ 0,

0 −−−→ kΛ −−−→ k[1] −−−→ M −−−→ 0.

Computing the homology long exact sequence for the first of these exact sequences, we see that
the boundary differential δ1 : Hi(Λ, M) → Hi+1(Λ, k) is non-trivial, so that the first short exact
sequence is not split, and that in fact δ1 is an isomorphism for all i ≥ 0. To prove the claim, it
suffices to check that the boundary differential δ2 : Hi+1(Λ, M) → Hi(Λ, k) in the second long exact
sequence also is an isomorphism for all i. Since everything is compatible with with k[u′]-action, it
suffices to prove it for i = 0 – in other words, we have to prove that the generator of H0(Λ, k) = k
goes to 0 under the map kΛ → k[1]. But if not, this means by definition that the second short
exact sequence is split. This is not possible: the duality Λ ∼= Λopp together with the usual duality
k -Vectopp → k -Vect, V 7→ V ∗ induce a fully faithfull duality functor Fun(Λ, k)o → Fun(Λ, k), and
this functor sends our short exact sequences into each other.

As for the constant, we note that it obviously must be universal, thus invertible in any field,
thus either 1 or −1. On the other hand, in the definition of (4.4) there is a choice: we have to
choose an orientation of the cirle S1. Switching the orientation changes the sign of u′, so that we
can always achieve u = u′. We leave it at that. �
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4.2 Canonical resolution.

We can extend the exact sequence (4.4) to a resolution of the constant functor kΛ by iterating it –
the result is a complex of the form

. . . −−−→ k[1] −−−→ k[1] −−−→ k[1] −−−→ k[1],

where the maps k[1] → k[1] are as in (4.4), and the maps k[1] → k[1] are the composition maps
k[1] → kΛ → k[1]. Moreover, for any cyclic vector space E ∈ Fun(Λ, k), we have a canonical
resolution

(4.5) . . . −−−→ k[1] ⊗ E −−−→ k[1] ⊗ E −−−→ k[1] ⊗ E −−−→ k[1] ⊗ E.

The periodicity map for E is induced by id⊗u ∈ Ext2(E, E), and it can be represented explicitly
by the obvious periodicity endomorphism of (4.5) which shift everything to the left by two terms.

It is instructive to see what happens if compute H q(Λ, E) by replacing E with (4.5), as in
Lemma 3.6 in the last Lecture. Both k[1]⊗E and k[1]⊗E are clean in the sense of Definition 3.3, so
that we can compute H q(Λ,−) by the complex (3.3). Applying it to (4.5) gives a double complex
Mi,j(E) with terms

Mi,j(E) =

{
(k[1]([j + 1])⊗ E([j + 1]))τ , i even,

(k[1]([j + 1])⊗ E([j + 1]))τ , i odd.

To identify further M0,j(E) = E([j + 1]), we need to choose a vertex v ∈ V ([j + 1]) (for instance,
we may fix the embedding j : ∆opp → Λ), and to identify M1,j(E) = E([j + 1]), we need to to
choose an edge e ∈ E([j +1]) (for instance, since choosing v ∈ V ([j +1]) cuts the wheel and defines
a total order on E([j + 1]), we can take the last edge with respect to this order). To compute
the differential b : Mi,j(E) → Mi,j−1(E), we note that for any contraction [j + 1] → [j] of an
edge e′ ∈ E([j + 1]), the corresponding face map me : k[1]([j + 1]) → k[1]([j]) sends the chosen
vertex v ∈ k[V ([j + 1])] = k[1]([j + 1]) to the chosen vertex v ∈ k[V ([j])]. On the other hand, it
immediately follows from (4.3) that the face map m′

e′ : k[1]([j + 1]) → k[1]([j]) sends the chosen
last edge e ∈ k[E([j + 1])] to e ∈ k[E([j])] if e 6= e′, and to 0 otherwise. Thus the diferential
b : Mi,j(E) → Mi,j−1(E) is given by

b =
∑

0≤l≤j

(−1)jrlml,

where rl = 0 if i is odd and l = j, and rl = 1 otherwise. Thus M q, q(E) becomes exactly isomorphic
to the original bicomplex (3.2) for the cyclic vector space E. We also have H q(Λ, E⊗k[1]) = 0, and
H q(Λ, E ⊗ k[1]) = H q(∆opp, j∗E).

4.3 Nerves and geometric realizations.

To anyone who studied algebraic topology, the cohomology algebra H
q
(Λ, k) = k[u] of the category

Λ will seem familiar: the same algebra appears as the cohomology algebra H
q
(CP∞, k) of the

infinite-dimensional complex projective space CP∞, the classifying space BU(1) for the unit circle
group U(1) = S1. This is not a simple coincidence. The relation between Λ and CP∞ has been
one of the recurring themes of the whole theory of cyclic homology from its very beginning.

The relation occurs at various levels, and while the most advanced ones are not properly un-
derstood even today, we do understand the picture up to a certain point. The next level after the
cohomology isomorphism is that of the so-called geometric realizations.



Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 4

Unfortunately, we do not have time to present the notion of the geometric realization in full
detail (it is easily available in the literature; my personal favourite is the exposition in Chapter
I of Gelfand-Manin’s book, also Quillen has a nice and concise exposition in his paper on higher
K-theory in Lecture Notes in Math., vol. 341). Let us just briefly remind the reader that to any
small category Γ, one associated a simplicial set N(Γ) called the nerve of the category Γ. By
definition, 0-simplices in N(Γ) are objects of Γ, 1-simplices are morphisms, 2-simplices are pairs
of composable morphisms [a1] → [a2] → [a3], and so on – n-simplices in N(Γ) are functors to Γ
from the totally ordered set [n + 1] considered as a category in the usual way. Given a simplicial
set X ∈ Fun(∆opp, Sets), one forms a topological space |X| called the geometric realization of X by
gluing together the elementary simplices ∆n, one for each n-simplex in X([n + 1]). Given a small
category Γ, we will call |N(Γ)| its geometric realization, and we will denote it simply by |Γ|.

Here are some simple properties of the geometric realization.

(i) We have |Γ| ∼= |Γopp|.

(ii) A functor γ : Γ → Γ′ induces a map |γ| : |Γ| → |Γ′|, and a map γ1 → γ2 between functors γ1,
γ2 induces a homotopy between |γ1| and |γ2|.

(iii) Consequently, if a functor γ : Γ → Γ′ has an adjoint, then |γ| is a homotopy equivalence. In
particular, if Γ has a final, or an initial object, then |Γ| is contractible.

(iv) If Γ is a connected groupoid, and an object [a] ∈ Γ has automorphism group is G, then up to
homotopy, |Γ| is the classifying space BG.

To any functor E ∈ Fun(Γ, k), one associates a constructible sheaf E of k-vector spaces on |Γ|
by the following rule: for any n-simplex [a0] → · · · → [an] of N(Γ), the restriction of E to the
corresponding simplex ∆n ⊂ |Γ| is the constant sheaf with fiber E([a0]), and the gluing maps are
either identical or induced by the action of morphisms in Γ. The gives an exact comparison functor
Fun(Γ, k) → Shv(|Γ|, k). This functor is fully faithful, and it is even fully faithful on the level of
derived categories: for any E, E ′ ∈ Fun(Γ, k) with corresponding sheaves E , E ′ ∈ Shv(|Γ|, k), the
natural map

Ext
q
(E, E ′) → Ext

q
(E , E ′)

is an isomorphism in all degrees (to prove it, one can, for instanse, use the Godement resolution of
E ∈ Fun(Γ, k) by representable sheaves, as in Lecture 2). Of course, the comparison functor is not
an equivalence: in general, the category Shv(|Γ|, k) is much larger. However, we have the following
obvious fact.

Definition 4.2. A functor E ∈ Fun(Γ, k) is locally constant if for any morphism f : [a] → [a′] in
Γ, the corresponding map E([a]) → E([a′]) is invertible.

Lemma 4.3. The comparison functor induces an equivalence between the derived category Dlc(Γ, k)
of complexes with locally constant homology and the derived category Shvlc(|Γ|, k) of complexes of
sheaves on |Γ| whose homology sheaves are locally constant. �

Corollary 4.4. Assume that for any field k and for any locally constant E ∈ Fun(Γ, k), we have
H q(Γ, E) = E([a]), where [a] ∈ Γ is s fixed object. Then |Γ| is contractible.

Proof. By the well-known Whitehead Theorem, a map f : X → Y of CW -complexes is a homotopy
equivalence if for any local systems A on Y , B on X, the induced maps H q(X, f∗A) → H q(Y,A),
H q(X, B) → H q(Y, f∗B) are isomorphisms. �
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Going back to the cyclic category Λ: our goal is to prove that |Λ| is homotopically equivalent
to CP∞. We will do it indirectly, in two steps: first, we prove that the realization |Λ∞| of the
category Λ∞ is contractible, then we prove that the projection functor Λ∞ → Λ induces a fibration
|Λ∞| → |Λ| whose fiber is the circle S1 = U(1) – thus |Λ∞| can be taken as the contractible space
EU(1), and |Λ| is homotopy equivalent to the classifying space EU(1)/U(1) = BU(1) ∼= CP∞.
For the first step, we only need Corollary 4.4, but for the second step, we need to develop some
machinery of fibrations for small categories.

4.4 Fibrations and cofibration of small categories.

The notion of a fibered and cofibered category was introduced by Grothendieck in SGA1, Ch.VI,
which is perhaps still the best reference for those who can read French; nowadays, this machinery
is usually called Grothendieck construction. Let me give the basic definitions.

Assume given a functor γ : Γ′ → Γ between small categories Γ, Γ′. By the fiber Γ′[a] over an

object [a] ∈ Γ we understand the subcategory Γ′[a] → Γ′ of objects [a′] ⊂ Γ′ such that γ([a′]) = [a],

and morphisms f such that γ(f) = id. A morphism f : [a] → [b] in Γ′ is called Cartesian if it has
the following universal property:

• any morphism f ′ : [a′] → [b] such that γ(f ′) = γ(f) factors through f by means of a unique
map [a′] → [a] in Γ′γ([a]).

Definition 4.5. A functor γ : Γ′ → Γ is called a fibration if

(i) for any f : [a] → [b] in Γ, and any b′ ∈ Γ′[b], there exists a Cartesian morphism f ′ : [a′] → [b′]

such that γ(f ′) = f , and

(ii) the composition of two Cartesian morphisms is Cartesian.

Condition (i) here mimics the “covering homotopy” condition in the definition of a fibration in
algebraic topology, but it is in fact much more precise — indeed, the Cartesian covering morphism
f ′, having the universal property, is uniquely defined. Grothendieck also introduced “cofibrations”
as functors γ : Γ′ → Γ such that γopp : Γ

′opp → Γopp is a fibration. This terminology is slightly
unfortunate because the topological analogy is still a fibration – “cofibration” in topology means
something completely different. For this reason, now the term “op-fibration” is sometimes used.
However, we will stick to Grothendieck’s original terminology.

Assume given a fibration γ : Γ′ → Γ and a morphism f : [a] → [b] in Γ. Then for any [b′] ∈ Γ′[b],

we by definition have a Cartesian morphism f ′ : [a′] → [b′], and using the universal property of
the Cartesian morphism, one checks that the correspondence [b′] 7→ [a′] is functorial: we have a
functor f ∗ : Γ′[b] → Γ′[a], [b′] 7→ [a′]. Using condition (ii) of Definition 4.5, one checks that for any

composable pair of maps f , g, we have a natural isomorphism (f ◦ g)∗ ∼= g∗ ◦ f ∗, and there is a
compatibility constraint for these isomorphisms when we are given a composable triple f , g, h. All
in all, the correspondence [a] 7→ Γ′[a], f 7→ f ∗ defines a contravriant “weak functor” from Γ to the
category of small categories. Conversely, every such “weak functor”, appropriately defined, arises in
this way. This was the main reason for Grothendieck’s definition of a fibration – it gives a nice and
short replacement for the cumbersome notion of a weak functor, with all its higher isomorphisms
and compatibility constraints.

Today, we will only need one basic fact about fibrations, and we will use it without a proof.

Definition 4.6. A fibration γ : Γ′ → Γ is locally constant if for any f in Γ, the functor f ∗ is an
equivalence.
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Proposition 4.7. Assume given a connected small category Γ and a locally constant fibration
γ : Γ′ → Γ. Then the homotopy fiber of the induced map |γ| : |Γ′| → |Γ| is naturally homotopy
equivalent to the realization |Γ′[a]| of the fiber over any object [a] ∈ Γ. �

4.5 Computation of |Λ|.
We can now prove that the realization |Λ| is equivalent to CP∞. We start with the following.

Lemma 4.8. The realization |Λ∞| is contractible.

Proof. By Corollary 4.4, it suffices to prove that H q(Λ∞, E) ∼= E([1]) for any locally constant
E ∈ Fun(Λ∞, k). The homology of the category Λ∞ can be computed by a complex similar to
(3.2): we take (3.2) and remove everything except for the two right-most columns. We leave it
to the reader to check that this indeed computes H q(Λ∞, E) (while the rows of the complex now
have only length 2, they still compute the homology of the infinite cyclic group Z = Aut([n]), and
the same proof as in Lemma 3.2 works). Since we now only have two columns, and one of them is
contractible, the Connes’ exact sequence reduces to an isomorphism

H q(∆opp, j∗E) ∼= H q(Λ∞, E).

Since j∗E is obviously locally constant, it suffices to check that the realization |∆opp| of the category
∆opp is contractible. This is clear — ∆opp has an initial object. �

Lemma 4.9. The natural functor Λ∞ → Λ is a locally constant fibration whose fiber is the groupoid
ptZ with one object whose automorphisms group is Z.

Proof. We use the combinatorial description of the category Λ. Then for any [n], [m] ∈ Λ, the
map Λ∞([n], [m]) → Λ([n], [m]) is surjective by definition, and one checks easily that any map
f ∈ Λ∞([n], [m]) is Cartesian. The fiber, again by definition, has one object, and its automorphism
group is freely generated by the automorphism σ. �

Proposition 4.10. We have a homotopy equivalence |Λ| ∼= CP∞ ∼= BU(1).

Proof. By Proposition 4.7 and Lemma 4.9, the homotopy fiber of the map |Λ∞| → |Λ| is homotopy
equivalent to |ptZ|, and since |Λ∞| is contractible, this implies that |ptZ| is homotopy equivalent
to the loop space of |Λ|. But ptZ is a groupoid, so that |ptZ| is equivalent to the classifying space
BZ ∼= S1. This means that |Λ| has only one non-trivial homotopy group, namely π2(|Λ|) = Z, so
that it must be the Eilenberg-MacLane space K(Z, 2) = CP∞. �

As a corollary, we see that the derived category Dlc(Λ, k) of complexes of cyclic objects with
locally constant homology objects is equivalent to the derived category of complexes of sheaves of
CP∞ with locally constant homology sheaves. The objects in this latter category are also know as
U(1)-equivariant constructible sheaves on the point pt.


