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Lecture 6.
Cyclic homology for general tensor categories. Morita-invariance. Exam-
ple: cyclic homology of a group algebra. Regulator map.

6.1 Cyclic homology for general tensor categories.

In the last lecture, we have constructed the derived category DΛlc(A-bimod) of cyclic bimodules
over an associative algebra A, and we have re-defined cyclic homology by means of a trace functor
tr : DΛlc(A-bimod) → Dlc(Λ, k). The algebra A itself essentially only appeared in the construction
though the tensor category A-bimod of A-bimodules. A natural question is, can we do the same
construction for a more general tensor category C?

To start with, we need to construct a category C# cofibered over Λ. Here there is one problem:
there is no well-defined tensor product for general abelian categories. Namely, we can introduce
the following.

Definition 6.1. Assume given two abelian k-linear categories C1, C2. The tensor product C1 ⊗ C2

is a k-linear abelian category equipped with a functor C1 × C2 → C1 ⊗ C2 which is k-linear and
right-exact in each variable, and has the following universal property:

• for any k-linear abelian category C ′, any functor C1×C2 → C ′ which is k-linear and right-exact
in each variable factors through C1 × C2 → C1 ⊗ C2, and the facrorization is unique up to an
isomorphism.

The problem is, while the tensor product in this sense is obviously unique up to an equivalence,
it does not always exist. However, it does exist for categories of modules or bimodules: one can
show that for any k-algebras A, B, we have A-mod⊗B-mod ∼= (A⊗B)-mod, A-bimod⊗B-bimod ∼=
(A⊗B)-bimod – thus the category A⊗n-bimod which we used in the last lecture is actually A-bimod⊗n

in the sense of Definition 6.2. There are other interesting cases, too. Thus we simply impose this
as an assumption.

Definition 6.2. A k-linear abelian tensor category C is good if it has arbitrary sums, the tensor
product functor is right-exact in each variable, and for any n, there exists a tensor product C⊗n in
the sense of Definition 6.2.

Remark 6.3. Sometimes in the representation-theoretic literature, “tensor category” means “sym-
metric tensor category” – that is, the tensor product is not only bilinear, but also symmetric – and
tensor categories in the normal sense are called “monoidal”. The reason for this is completely un-
clear to me, and this is bad terminology – in the standard language of category theory, “monoidal”
does not imply that the tensor product is a bilinear functor.

Given a good k-linear unital tensor category C, we can literally repeat the construction of the
last lecture and obtain a category C# which is cofibered over Λ – the fiber (C#)[n] is the category
C⊗n, and the transition functors f! are obtained from the tensor product functors mn : C⊗n → C
(for n = 0, we take C⊗n = k -Vect, and m0 : k -Vect → C is the functor which sends k to the
unit object in C). Again, the category Sec(C#) of sections of the cofibration C# → Λ is abelian by
Proposition 5.3, so that we can consider the derived category DΛ(C) = D(Sec(C#)) and the full
triangulated subcategory DΛlc(C) = Dcart(Sec(C#)) spanned by Cartesian sections. We will call
DΛlc(C#) the cyclic envelope of C#.

Cyclic envelope only depends on the tensor category C. However, already to define Hochschild
homology HH q(C) of the category C, we need an extra datum – a right-exact “trace functor”.
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Definition 6.4. Assume given a good k-linear tensor category C. A trace functor on C is a functor
tr : C → k -Vect which is extended to a functor tr : C# → k -Vect in such a way that tr(f) is
invertible for any Cartesian map f in C#/Λ.

Explicitly, a trace functor is given by a functor tr : C → k -Vect and an isomorphism

(6.1) τ : tr(M ⊗N) ∼= tr(N ⊗M)

for any two objects M, N ∈ C. The isomorphism τ should be functorial in both M and N , and
satisfy the condition τ31 ◦ τ12 ◦ τ23 = id, as in (5.2). We leave it to the reader to check that such an
isomorphism τ uniquely defines an extension of tr to the whole category C#.

Given a good k-linear tensor category C equipped with a trace functor tr, we can repeat the
construction of the last lecture: we extend tr to a functor tr : Sec(C#) → Fun(Λ, k), and consider
the corresponding dervied functor L

q
tr : DΛ(C) → D(Λ, k). As before, it sends DΛlc(C) ⊂ DΛ(C)

into Dlc(Λ, k).

Definition 6.5. Hochschild homology HH q(C, tr) of the pair 〈C, tr〉 is given by

HH q(C, tr) = L
q
tr(I),

where I ⊂ C is the unit object. Cyclic homology HC q(C, tr) of the pair 〈C, tr〉 is given by

HC q(C, tr) = H q(Λ, L
q
tr I#),

where I# ∈ Seccart(C#) is the Cartesian section of C# → Λ which sends an object [n] ∈ Λ to
I�n ∈ C⊗n, the n-th power of the unit object I ∈ C.

Of course, in the case C = A-bimod, tr as in the last lecture, we have HC q(A-bimod, tr) =
HC q(A, A#) = HC q(A) by virtue of Proposition 5.6.

6.2 Morita-invariance of cyclic homology.

As an application of the general formalism developed above, we prove that Hochschild and cyclic
homology of an associative algebra A only depends on the category A-mod of left A-modules. This
is known as Morita invariance.

A typical situation is the following. Assume given two k-algebras A, B, and a k-linear functor
F : A-mod → B-mod. Assume that F is right-exact and commutes with infinite direct sums.
Consider the B-module P = F (A). Since EndA(A) = Aopp, P is not only a left B-module, but also
a right A-module – in other words, an A − B-bimodule. By definition, we have F (A) = A ⊗A P ;
since F is right-exact and commutes with arbitrary sums, the same is true for any M ∈ A-mod –
the bimodule P represents the functor F in the sense that we have a functorial isomorphism

F (M) ∼= M ⊗A P.

If F is an equivalence of categories, then the inverse equivalence F−1 is of course also right-exact and
commutes with sums; thus we have a B−A-bimodule P o representing F−1, and since F ◦F−1 ∼= Id,
F−1 ◦ F ∼= Id, we have isomorphisms

(6.2) A ∼= P ⊗B P o ∈ A-bimod, B ∼= P o ⊗A P ∈ B-bimod.

Proposition 6.6. Assume given two associative k-algebras A, B, and an equivalence A-mod ∼=
B-mod. Then there exist natural isomorphisms HH q(A) ∼= HH q(B), HC q(A) ∼= HC q(B).
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Proof. As we have already proved, every right-exact k-linear functor G : A-mod → A-mod which
commutes with sums is represented by an A-bimodule Q. Conversely, every Q ∈ A-bimod represents
such a functor. Tensor product of bimodules corresponds to the composition of functor. Therefore
the k-linear tensor category A-bimod only depends on the k-linear abelian category A-mod, and
can be recovered as the category of endofunctors of A-mod of a certain kind (k-linear, right-exact,
preserving sums). Thus in our situation, we have a natural equivalence F : A-bimod ∼= B-bimod
of k-linear abelian tensor categories. It induces an equivalence of the corresponding categories of
cyclic bimodules. To finish the proof, it suffices to prove that the equivalence A-bimod ∼= B-bimod
is compatible with the natural trace functors on both side. This is obvious: for any M ∈ A-bimod,
we have

tr(M) = A⊗Aopp⊗A M ∼= B ⊗Bopp⊗B (P ⊗ P o)⊗Aopp⊗A M ∼= B ⊗Bopp⊗B F (M) = tr(F (M)),

where P and P o are as in (6.2). �

6.3 Example: group algebras

Traditionally, in every exposition of cyclic homology, the authors devote some time to one very
special case, that of a group algebra. I don’t really know why — whether it’s because this is needed
to construct the regulator map from higher algebraic K-theory, or because there are interesting
new things special for the group algebra case, or for some other reason. But let me follow the
tradition. This will also give us an example where the general theory of cyclic homology for tensor
categories is applied to a tensor category which is not a category of bimodules.

Assume given a group G, and consider the group algebra k[G]. This is an associative unital
algebra, so it has Hochschild and cyclic homology, and the category of k[G]-bimodules is a tensor
category. However, since G is a group, the category G-mod = k[G]-mod of representation of G
a.k.a. left k[G]-modules is a tensor category in its own right. Moreover, there is an obvious functor
γ : G-mod → k[G]-bimod which sends a representation V ∈ G-mod to a functor G-bimod → G-bimod
given by M 7→ M ⊗ V (here we use the interpretation of k[G]-bimodules as endofunctors of the
category G-mod). This functor is obviously exact and obviously tensor. Explicitly, it is given by

γ(V ) = V ⊗R,

where we denote R = k[G], the left k[G]-action on V ⊗R is through V and R, and the right action
is through R: we have g1(v ⊗ g)g2 = g1v ⊗ g1gg2. If we have two representations V1, V2 ∈ G-mod,
the natural isomorphism γ(V1 ⊗ V2) ∼= γ(V1)⊗k[G] γ(V2) is given by the map

(6.3) V1 ⊗ V2 ⊗R → (V1 ⊗R)⊗k[G] (V2 ⊗R)

which sends v1 ⊗ v2 ⊗ g to (v1 ⊗ 1)⊗ (v2 ⊗ g), where 1 ∈ G is the unity element.
Since the functor γ is tensor, the usual trace functor tr on k[G]-bimod gives by restriction a

trace functor trR = tr ◦γ on G-mod. Explicitly, it is given by

trR(V ) = (V ⊗R)/{g1v ⊗ g1g − v ⊗ gg1 | g, g1 ∈ G, v ∈ V },

and since the quotient is over all g and all g1, we might as well replace g with gg−1
1 . Then we have

trR(V ) = (V ⊗R)/{g1v ⊗ g1gg−1
1 − v ⊗ g} = (V ⊗R)G,

the G-coinvariants in the G-representation V ⊗R, where R is equipped with the adjoint G-action.
One can also check, and this is important, that the identification survives on the level of derived
functors — the natural map

(6.4) L
q
tr(γ(V )) → L

q
trR(V ) = H q(G, V ⊗R)
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is an isomorphism in all degrees. For example, for the trivial representation V = k, we obtain an
isomorphism HH q(k[G]) ∼= H q(G, R). The isomorphism τR : trR(V1 ⊗ V2) ∼= trR(V2 ⊗ V1) of (6.1)
is induced by the usual symmetry isomorphism V1 ⊗ V2 → V2 ⊗ V1 and the isomorphism (6.3);
explicitly, τR is the map on the spaces of coinvariants induced by the map

(6.5) τ̃R : V1 ⊗ V2 ⊗R → V2 ⊗ V1 ⊗R, τ̃R(v1 ⊗ v2 ⊗ g) = gv2 ⊗ v1 ⊗ g.

One easily checks that the map τ̃R defined in this way is actually a map of G-representations.
Applying the general theory of cyclic homology with coefficients, we extend this isomorphism

to an isomorphism
HC q(k[G]) ∼= HC q(G-mod, trR).

We now note that the adjoint representation R = k[G] canonically splits into a direct sum R =⊕
〈g〉 R

g over the conjugacy classes 〈g〉 ⊂ G, Rg = k[〈g〉], and this induces a canonical direct sum
decomposition

(6.6) trR =
⊕
〈g〉

trg

of the trace functor trR: we set trg(V ) = (V ⊗ Rg)G, and since the isomorphism t̃r
R

of (6.5)
obviously respects the direct sum decomposition, the isomorphism τR induces isomorphisms (6.1)
for every component trg. Therefore we actually have a canonical direct sum decomposition of cyclic
homology:

(6.7) HC q(k[G]) =
⊕
〈g〉

HC q(G-mod, trg),

and a corresponding decomposition for HH q(k[G]).
However, we can say more. Consider the component tr1 in the decomposition (6.6) which

corresponds to the unity element 1 ∈ G. Then we have tr1(V ) = VG, the space of G-coinvariants,
and

HH q(G-mod, tr1) ∼= H q(G, k).

What can we say about the cyclic homology HC q(G-mod, tr1)? Looking at (6.5), we see that
the isomorphism tr1(V1 ⊗ V2) ∼= tr1(V2 ⊗ V1) for the trace functor tr1 is induced by the symmetry
isomorphism v1⊗v2 → v2⊗v1. We can rephrase this in the following way: since the tensor category
G-mod is symmetric, any right-exact functor F : G-mod → k -Vect canonically extends to a trace
functor F# : G-mod# → k -Vect, and it is this trace functor structure that tr1 has — we have
tr1 ∼= Coinv#, where Coinv : G-mod → k -Vect is the coinvariants functor, V 7→ VG.

In other words, the identity functor Id : G-mod → G-mod can also be considered as a trace
functor, albeit with values in G-mod rather than k -Vect, so that we have a functor

L
q
Id : DΛ(G-mod) → D(Λ, G-mod) = D(Λ× ptG, k),

where ptG is the category with one object with automorphism group G, and the trace functor L
q
tr1

factors through L
q
Id, so that we have

HC q(G-mod, tr1) = H q(Λ× ptG, L
q
Id(I#)).

Moreover, Id is exact, so that there is no need to take its derived functor, and we simply have
L

q
Id(I#) = Id(I#) = kΛ×ptG , the constant cyclic k-vector space with the trivial action of G. Thus

by the Künneth formule, we have

HC q(G-mod, tr1) ∼= H q(Λ× ptG), k) = H q(Λ, k)⊗H q(ptG, k).
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Since H q(ptG, k) = H q(G, k) = HH q(G-mod, tr1), we conclude that the Hodge-to-de Rham spectral
sequence for the cyclic homology HC q(G-mod, tr1) canonically degenerates: we have a canonical
isomorphism

(6.8) HC q(G-mod, tr1) ∼= HH q(G-mod, tr1)[u−1]

for the unity component in the direct sum decomposition (6.7).

6.4 The regulator map

To finish today’s lecture, let me give the standard application of the above computation of groups
algebras: I will construct the higher regulator a.k.a. higher Chern character map from Quillen’s
higher K-theory to cyclic homology.

Recall that to define higher K-theory of an algebra A, one considers the group GL∞(A) =
lim→ GLN(A) of infinite matrices over A and its classifying space BGL∞(A). This is of course
an Eilenberg-MacLane space of type K(π, 1). However, Quillen defined a certain very non-trivial
operation called the plus-construction with replaces a topological space X with another topological
space X+ so that the homology is the same, H q(X, Z) ∼= H q(X+, Z), but X+ has an abelian
fundamental group. Then by definition, higher K-groups of A are given by

K
q
(A) = π q(BGL∞(A)+),

the homotopy groups of the plus-construction BGL∞(A).
These groups are very hard to compute (not surprisingly, since homotopy groups in general are

hard to compute). Fortunately, to construct the regulator, we do not need to do it. Namely, for
any topological space X, there exists a canonical Hurewitz map π q(X) → H q(X). The regulator
map factors through the Hurewitz map for BGL+

∞, so that the source of the map we will construct
is actually the homology H q(BGL+

∞). At this point, we can also get rid of the plus-construction:
by its very definition, H q(X) = H q(X+), so that H q(BGL+

∞) = H q(BGL∞) = H q(GL∞, Z), the
homology of the group GL∞(A) with trivial coefficients. In fact, our map will further factor through
H q(GL∞(A), k).

What is the natural target of the regulator map? Comparison with the Chern character map
in algebraic geometry suggests at first that this should the de Rham cohomology groups H

q
DR(−)

— in our situation, these correspond to the periodic cyclic homology groups HP q(A). However,
it is known that the Chern character actually behaves nicely with respect to the Hodge filtration
— the Chern character map K0(X) →

⊕
i H

2i
DR(X) for an smooth algebraic variety X actually

factors through
⊕

i F
iH2i

DR(X). In the non-commutative situation, this corresponds to taking the
0-th graded piece of the Hodge filtration on HP q(A). This has its own name.

Definition 6.7. The negative cyclic homology HC−q (A) of an algebra A is the 0-th term F 0HP q(A)
of the Hodge filtration on HP q(A).

If we compute HP q(A) by the standard periodic bicomplex, then computing HC−q (A) amount
to removing all the columns to the left of the 0-th one — as opposed to the usual HC q(A), where
we remove everything to the right. This explains the adjective “negative”.

So, what we want to do is to construct a map H q(GL∞(A), k) → HC−q (A). This is done in
three steps.

First, fix some integer N , and consider the group algebra k[GLN(A)]. This has a natural map
into the algebra MatN(A) of N×N -matrices in A – an element g ∈ GLN(A) goes to itself considered
as an element in MatN(A). The map of algebras induces a map of negative cyclic homology; passing
to the limit, we obtain a map

lim
→

HC−q (k[GLN(A)]) → lim
→

HC−q (MatN(A)).
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Second, we observe that by Morita-invariance of cyclic homology, the directed system in the right-
hand side is actually constant — we have HC−q (MatN(A)) ∼= HC−q (A) for any N . Thus we have
constructed a map

lim
→

HC−q (k[GLN(A)]) → HC−q (A).

Finally, we use the direct sum decomposition (6.7) — we take the graded piece of (6.7) corresponding
to the unity element 1 ∈ GLN(A), and apply the canonical Hodge-to-de Rham degeneration (6.8).
This gives a canonical map

H q(GL∞(A), k) = lim
→

H q(GLN(A), k) → lim
→

HC−q (k[GLN(A)]).

Composing the two maps above, and plugging in the Hurewitz map, we obtain the higher regulator
map K q(A) → HC−q (A).


