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Lecture 9.
The language of operads. Poisson and associative operad. Gerstenhaber
operad and small discs. Braided algebras. Deligne Conjecture.

9.1 The language of operads.

These days, it has become common practice to use the language of the so-called operads to describe
various non-trivial algebraic structures such as that of a Gerstenhabe algebra. It must be mentioned
that the notion of an operad has been introduced 35 years ago by P. May essentially as a quick hack;
it is not very natural, and in many cases it is not quite what one needs, so that descriptions using
operads tend to be somewhat ugly and somewhat artificial. But at least, from the formal point of
view, everything is well-defined. We will only sketch most proofs. For a complete exposition which
covers much if not all the material in this lecture, I refer the reader, for instance, to the paper
arXiv:0709.1228 by V. Ginzburg and M. Kapranov which is now considered one of the standard
references on the subject (the paper was published in 1994, and I am grateful to V. Ginzburg who
finally put it on arxiv in 2007). Another reference is the foundational paper arXiv:hep-th/9403055
by E. Getzler and J.D.S. Jones, but this has to be used with care, since some advanced parts of it
were later found to be wrong.

To define an operad, let Γ be the category of finite sets, and let Γ[2] be the category of arrows
in Γ (objects are morphisms f : S ′ → S between S ′, S ∈ Γ, morphisms are commutative squares).
Then Γ has a natural embedding into Γ[2]: every finite set S has a canonical morphism pS : S → pt
into the finite set pt ∈ Γ with a single element. We note that every f ∈ Γ[2], f : S ′ → S canonically
decomposes into a coproduct

(9.1) f =
∐
s∈S

f s,

where f s ∈ Γ[2] is the canonical map pf−1(s)f−1(s) → pt corresponding to the preimage f−1(s) ⊂ S ′.

Definition 9.1. An operad O q of k-vector spaces is a rule which assigns a vector space Of to any
f ∈ Γ[2] together with the following operations:

(i) for any pair f : S ′ → S, g : S ′′ → S ′ of composable maps, a map µf,g : Of ⊗Og → Of◦g,

(ii) for any f ∈ Γ[2], f : S ′ → S, an isomorphism

Of
∼=

⊗
s

Ofs ,

where f s = pf−1(s) are as in (9.1).

Moreover, the assignment f 7→ Of should be functorial with respect to isomorphisms in Γ[2], the
maps in (i) and (ii) should be functorial maps, and for any triple f, g, h ∈ Γ[2] of composable maps,
the square

Of ⊗Og ⊗Oh −−−→ Of◦g ⊗Ohy y
Of ⊗Og◦h −−−→ Of◦g◦h

should be commutative.
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It is useful to require also that Oid
∼= k for an identity map id : S → S, and we shall do so. We

note that by virtue of (ii), it is sufficient to specify only the vector spaces OpS for the canonical
maps pS : S → pt (these are usually denoted OS, or simply On, where n is the cardinality of S).
However, the way we have formulated the definition makes it slightly more natural, and slightly
easier to generalize.

Definition 9.2. An algebra A over an operad O q of k-vector spaces is a k-vector space A, together
with an action map

af : Of ⊗ A⊗S1 → A⊗S2

for any f ∈ Γ[2], f : S1 → S2, where for any finite set S ∈ Γ, we denote by A⊗S the tensor product
of copies of A numbered by elements s ∈ S. The maps af should be functorial with respect to
isomoprhisms in Γ[2] and satisfy the following rules:

(i) For a pair f, g ∈ Γ[2] of composable maps, we should have af ◦ ag = af◦g ◦ µf,g.

(ii) For any f ∈ Γ[2], f : S ′ → S, we should have

af =
⊗
s∈S

afs .

As in the definition of an operad, (ii) insures that it is sufficient to specify the action maps
an = aS = apS : OpS ⊗ A⊗S → A for all S ∈ Γ, but our formulation is slightly more natural. We
also note that algebras over a fixed operad O form a category, which has a forgetfull functor into
the category of k-vector spaces. The left-adjoint functor associates to a k-vector space V the free
O-algebra FOV generated by V , which is explicitly given by

(9.2) FOV =
⊕
S∈Γ

(
OS ⊗ V ⊗S

)
Aut(S)

,

where the sum is over all the isomorphism classes of finite sets — in other words, over all integers
— and Aut(S) is the symmetric group of all automorphisms of a finite set S.

The reasoning behind these definitions is the following. We want to describe algebras of a certain
kind — associative algebras, commutative algebras, Lie algebras, Poisson algebras, etc. To do so,
one usually says that an algebra is a vector space A equipped with some multilinear structural
maps which satisfy some axioms (associativy, the Jacobi identity, and so forth). However, this is
not always convenient — just as describing a concrete algebra by its generators and relations is
usually too cumbersome. An operad O encodes all the polylinear operations we want our algebra
to have. More precisely, given some f : S1 → S2, we collect in the vector space Of all the
operations from A⊗S1 to AS2 which can be obtained from the structural maps by composing them
and substituting one into the other; and we take the quotient by all the relations our concrete type
of algebraic structure imposes on these compositions. Moreover, we only want to consider those
algebraic structures which are defined by operations with values in A itself, not its tensor powers.
This is the reason for the condition (ii) in Definition 9.1 and Definition 9.2.

9.2 Examples.

Probably the simplest example of an operad is obtained by taking Of = k, the 1-dimensional vector
space, for any f ∈ Γ[2]. This operad is denoted by Com. A moment’s reflection shows that algebras
over Com are nothing but commutative associative unital algebras. Indeed, by definition, we must
have a unique action map

aS : A⊗S → A
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for any S ∈ Γ, and moreover, this map should be functorial with respect to isomorphisms in Γ —
in other words, apS must the equivariant with respect to the natural action of the symmetric group
Aut(S). Thus first, we must have a commutative multiplication µ : A⊗2 → A corresponding to
the generator of Com2 = k, and second, any way to compose this operation to obtain an operation
A⊗n → A for any n must give the same result — which for n = 3 implies associativity,

µ ◦ (µ⊗ id) = µ ◦ (id⊗µ).

One checks easily that conversely, associativity implies the uniqueness for any n ≥ 3. The free Com-
algebra FComV generated by a vector space V is given by (9.2) and coincides with the symmetric
algebra S

q
V .

Exercise 9.1. Check that for a Com-algebra A, the action map a0 : k = A⊗0 → A provides a unity
in the commutative associative algebra A.

A slightly more difficult example is the operad Ass which encodes the structure of an associative
unital algebra: it is usually described by setting

AssS = k[Aut(S)],

the regular representation of the symmetric group Aut(S). To define the operadic composition, one
can, for example, consider the so-called category Σ of non-commutative sets: objects are finite sets,
morphisms from S ′ to S are pairs of a map f : S ′ → S of finite sets and a total ordering on every
preimage f−1(s), s ∈ S. The composition is obvious, and we obviously have the forgetfull functor
γ : Σ → Γ which forgets the total orders. Then we set

(9.3) Assf = k[{f ′ ∈ Σ(S ′, S) | γ(f ′) = f}]

for any f ∈ Γ, f : S ′ → S, and the composition in Σ induces the composition maps Assf ⊗Assg →
Assf◦g. The free algebra FAssV generated by a vector space V is the tensor algebra T

q
V .

Let us assume from now on that the base field k has characteristic 0, char k = 0. For any vector
space V , the diagonal map V → V ⊕ V induces a coproduct T

q
V → T

q
V ⊗ T

q
V which turns the

tensor algebra T
q
V into a cocommutative Hopf algebra. Since char k = 0, this means that T

q
V is

the universal envelopping algebra of some Lie algebra L
q
V . In fact, by the universality property

of a universal envelopping algebra, L
q
V is the free Lie algebra generated by V . The universal

envelopping algebra T
q
V acquires a Poincaré-Birkhoff-Witt increasing filtration K qT q

V , and the
associated graded quotient with respect to this filtration is the symmetric algebra generated by
L

q
V — we have a canonical identification

grFq T
q
V ∼= S

q
L

q
V.

This graded quotient is a Poisson algebra, and it is easy to see by spelling out the universal
properties that P qV = grFq T

q
V is actually the free Poisson algebra generated by V .

Now, both the PBW filtration and the isomorphism grFq T
q
V ∼= P qV are functorial in V ; this

implies that what we actually have is a decreasing filtration F
q
Ass on the associative operad Ass,

and an identification gr
q
F Ass ∼= Poi between the associated graded quotient of Ass and an operad

Poi which encodes the structure of a Poisson algebra (in particular, the PBW filtration on Ass
is compatible with the operadic structure). We see that Poi is in fact an operad of graded vector
spaces. This is also obvious from the definition: if we assign degree 0 to multiplication and degree 1
to the Poisson bracket, then all the axioms of a Poisson algebra are compatible with these degrees.

The highest degree term of the PBW filtration on Ass — or equivalently, the highest term in
the associated graded quotient gr

q
F Ass ∼= Poi — is the Lie operad Lie; the natural maps Lie → Ass,
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Lie → Poi encode the fact that both a Poisson algebra and an associative algebra are Lie algebras in
a canonical way (in the associative case, the bracket is given by the commutator, [a, b] = ab− ba).
We note that it is not trivial to describe Lie explicitly. For example, the dimension of Lien is (n−1)!.
If the base field k is algebraically closed, then Lien can be described as the representation of the
symmetric group Σn induced from the non-trivial character of the cyclic subgroup Z/nZ ⊂ Σn

spanned by the long cycle. It is a pleasant exersize to check that this representation is actually
defined over k even when k is not algebraically closed.

Finally, the example that interest us most is that of Gerstenhaber algebras. Since the definition
of a Gerstenhaber algebra differs from that of a Poisson algebra only in the degree assigned to the
bracket, one might expect that Gerstenhaber algebras are controlled by an operad Gerst

q
essentially

isomorphic to Poi
q
. This is true, but there is the following subtlety. Both Poi

q
and Gerst

q
are operads

of graded k-vector spaces, but this can means one of two distinct things: either we define the product
of graded vector spaces simply as their product with induced grading, or we treat the degree as a
homological degree. The difference is in the symmetry isomorphism σ : V q ⊗W q → W q ⊗ V q of the
tensor product of graded vector spacee V q, W q: if the degree is homological, then by convention we
introduce the sign and define σ by

σ(a⊗ b) = (−1)deg a deg bb⊗ a.

Now, Gerst
q
and Poi

q
are both operads of graded vector spaces, and the difference between them is

the following: the action of the symmetric group Aut(S) on GerstS is twisted by the sign represen-
tation — for any n, S, we have

(9.4) GerstnS
∼= PoinS ⊗ε⊗n,

where ε is the one-dimensional sign representation of Aut(S). But while Poi
q
is a graded operad in

the usual naive sense, the degree in Gerst
q
is homological, and because of this, the isomorphisms

(9.4) are still compatible with the operadic structure.

9.3 Little cubes operad.

It turns out, however, that there is a different, more conceptual construction of the Gerstenhaber
operad Gerst.

One immediately notes that in the definition of an operad, one can use any symmetric monoidal
category instead of the category of k-vector spaces. Thus we can speak not only about operads of
vector spaces, or graded vector spaces, but also abouts operads of sets and operads of topological
spaces. And historically, it was the operads of topological spaces which appeared first — specifically,
the so-called operad of little n-cubes.

Let I be the unit interval [0, 1]. Fix a positive integer n, and consider the cube In of size 1 of
dimension n. For any finite set S, say that an S-cube configuration in In is an open subset in In

whose complement is the union connected components numbered by elements of S, each being a
subcube in I of smaller size, whose faces are parallel to faces of In. Let On

S be the set of all such
configurations. A configuration is completely determined by the centers and the sizes of all the
cubes, so that On

S is naturally an open subset in (I(n+1))S. This turns it into a topological space.
We now note that the collection On

S with a fixed n naturally defines an operad of topological
spaces. The composition is given by the following procedure: take an S1-cube configuration in In,
rescale it to a smaller size, and plug it into an S2-cube configuration by filling in one of the connected
components of its complement. When the sizes fit, the result is obviously an (S1 ∪ S2 \ {s})-cube
configuration, where s ∈ S2 is the point which we used for the operation. We leave it to the reader
to check that this procedure indeed gives a well-defined operad, and that all the structure maps of
this operad are continuous maps.
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Definition 9.3. The operad Onq is called the operad of little n-cubes.

What one is interested in is not the topological spaces On
S but their homotopy types, and these

have a simpler description. Forgetting the size of a cube defines a projection On
S → (In)S \Diag, the

complement to all the diagonals in the power (In)S, and this projection is a homotopy equivalence
— in other words, On

S is homotopy-equivalent to the configuration space of injective maps from S
to In. Equivalently, one can take Rn instead of the cube In. Unfortunately, the structure of the
operad is not visible in this model.

If n = 1, we can go even further: the configuration space of injective maps from S to the interval
I has |Aut(S)| connected components, numbered by the induced total order on the set S, and each
connected component is a simplex, thus contractible. We conclude that O1

S is homotopy-equivalent
to the (discrete finite) set of total orders on S.

Now, taking the homology with coefficients in k turns any operad of topological spaces into
an operad of graded k-vector spacers. In particular, for any n ≥ 1 we have an operad formed by
H q(On

S, k).

Exercise 9.2. Check that for n = 1, H q(Onq , k) is the operad Ass q. Hint: use the description (9.3).

Proposition 9.4. Algebras over the homology operad H q(O2
S, k) of the operad O2q of little squares

are the same as Gerstenhaber algebras, and H q(O2
S, k) is isomorphic to the Gerstenhaber operad

Gerst
q
.

Proof. This is an essentially well-known but rather non-trivial fact; for example, it implies that
Hn(O2

n, k) is the n-th space Lien of the Lie operad — as far as I know, this was first proved by V.
Arnold back in the late 60-es.

Let us first construct a map of operads a q : Gerst
qq ∼= H q(O2q , k). The component Gerst

q
2 is

spanned by the product and the bracket, and O2
2 is the complement to the diagonal in the product

I2 × I2, which is homotopy-equivalent to the circle S1. We define a2 by sending the product in
Gerst02 to the class of a point in H0(S

1, k) ∼= k, and the bracket in Gerst12 to the fundamental class
in H1(S

1, k) ∼= k.

Exercise 9.3. Check that this extends to a map of operads. Hint: since all the relations in Gerst
q

invlove only three indeterminates, it is sufficient to consider O2
3.

Now assume by induction that ai is an isomorphism for all i ≤ n. By definition, Gerst
q
n+1

is spanned by all expressions involving the product and the bracket in n + 1 indeterminates
x1, . . . , xn+1. Substituting the unity instead of xn+1 gives a map Gerst

q
n+1 → Gerstn; this map

is obviously surjective. Substituting {xn+1, xi} instead of xi gives a map Gerst
q
n⊗k[S] → Gerst

q+1
n+1,

where S is the set of indeterminates x1, . . . , xn. Since {1, xi} is by definition equal to 0, we have a
sequence

(9.5) Gerst
q−1
n ⊗k[S] −−−→ Gerst

q
n+1 −−−→ Gerst

q
n −−−→ 0.

which is exact on the right.
On the geometric side, filling in the (n + 1)-st cube in a cube configuration — or equivalently,

forgetting the (n+1)-st point in a configuration of points in R2 — defines a projection O2
n+1 → O2

n,
and this is a fibration with fiber En = R2 \ S, where S ⊂ R2 is the configuration of the remaining
n distinct points. We have the Leray spectral sequence

H q(O2
n, H q(E2

n, k)) ⇒ H q(O2
n+1, k).

The homology H q(E2
n, k) is only non-trivial in degrees 0 and 1; the group H1(E

2
n, k) can be naturally

identified with k[S] by sending s ∈ S to a small circle around its image in R2. The fundamental
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group of the base O2
n is the pure braid group, and it is easy to check that it acts trivially on

H q(E2
n, k), so that the spectral sequence reads

H q(O2
n, k)⊗H q(E2

n, k) ⇒ H q(O2
n+1, k).

Moreover, replacing R2 with C, we can treat O2
S = CS \ Diag as a complex algebraic variety

whose homology groups have Hodge structures, and in particular, weights. One checks easily that
Hn(O2

S, k) is pure Hodge-Tate of weight 2n. Therefore the Leray spectral sequence degenerates, so
that, taking in account the isomorphism H1(E

2
N , k) ∼= k[S], we have a short exact sequence

(9.6) 0 −−−→ H q−1(O
2
n, k)⊗ k[S] −−−→ H q(O2

n+1, k) −−−→ H q(O2
n, k) −−−→ 0.

Now, it is obvious from the construction of the map a q that it is a map between (9.5) and (9.6), so
that we have a commutative diagram

(9.7)

Gerst
q−1
n ⊗k[S]

f−−−→ Gerst
q
n+1 −−−→ Gerst

q
n −−−→ 0

an

y yan+1

yan

0 −−−→ H q−1(O
2
n, k)⊗ k[S] −−−→ H q(O2

n+1, k) −−−→ H q(O2
n, k) −−−→ 0.

Moreover, we now that an is an isomorphism, which implies in particular that the map f in (9.7)
is injective. To prove that an+1 is also an isomorphism, it suffices to prove that the top row forms
a short exact sequence. But we also have the projection O1

n+1 → O1
n, and it induces a short exact

sequence
0 −−−→ Assn⊗k[S] −−−→ Assn+1 −−−→ Assn −−−→ 0

which gives (9.5) under taking the associated graded with respect to the Poincaré-Birkhoff-Witt
filtration and using the isomorphism Gerst

q ∼= Poi
q
. Since this sequence is exact, and its associated

graded is exact on the left and on the right, it must also be exact in the middle term for dimension
reasons. �

9.4 Braided algebras and Tamarkin’s proof.

What we did in Proposition 9.4 was to take two different operads, that of 1-cubes and that of
2-cubes, and identify, up to a sign twist, H q(O2q , k) with a certain associated graded quotient of
H q(O1q , k) (which reduces to H0(O

1q , k)). We now note that H q(O2q , k) can also be treated as an
associated graded quotient. Namely, given a topological space X, one can consider its singular
chain complex C q(X, k). Every complex E q has a “canonical filtration” F

q
E q given by

F iEj =


0, j < i,

Ker d, j = i,

Ej, j > i,

where d is the differential. The associated graded quotient gr
q
F E q is canonically quasiisomorphic

to the sum of homology of the complex E q. In particular, we have

gr
q
F C q(X, k) ∼= H q(X, k).

Thus passing to homology is, up to quasiisomorphism, equivalent to taking the associated graded
quotient with respect to the canonical filtration.
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Given an operad X q of topological spaces, we can consider the DG operad formed by C q(X q, k).
The canonical filtration, being canonical, is automatically compatible with the operadic structure,
and the associated graded quotient gr

q
F C q(X q, k) is quasiisomorphic to H q(X q, k).

In particular, we can consider the operad C q(O2q , k). Its canonical filtration in fact behaves
similarly to the PBW filtration on Ass = H0(O

1q , k), although to define it, we do not need to use
the structure of an operad. The associated graded quotient gr

q
F C q(O2q , k) is quasiisomorphic to the

Gerstenhaber operad Gerst.

Definition 9.5. A braided algebra is a DG algebra over the DG operad C q(O2q , k).

The term “braided algebra” comes from the relation between O2
n and the pure braid group Bn

of n braids: we have π1(O
2
n) = Bn, and one can show that O2

n has no higher homotopy groups, so
that it is homotopy-equivalent to the classifying space of Bn.

We note that as stated, Definition 9.5 is almost useless, since the singular chain complex C q(X)
of a topological space is huge — one cannot expect the DG operad C q(O2q , k) to act on anything
reasonable. However, what one can do is to invert quasiisomorphisms and consider DG algebras over
some DG operad O q “up to quasiisomorphism”, in the same way as we did for DG Lie algebras.
A convenient formalism for this is provided by the so-called closed model categories originally
introduced by Quillen (a modern reference is the book “Model categories” by M. Hovey). This
gives a certain well-defined category Ho(O q), and, what is important, it only depends on the
defining operad “up to a quasiisomorphism” — a quasiisomorphism O′q → O q between DG operads
induces an equivalence Ho(O′q) ∼= Ho(O q). In practice, one is only interested in braided algebras up
to a quasiisomorphism, that is, in objects of the category Ho(C q(O2q , k)); and to construct such an
algebra, it is sufficient to have a DG algebra over some DG operad quasiisomorphic to C q(O2q , k).
It is this structure which one has on the Hochschild cohomology complex of an associative unital
algebra A.

Theorem 9.6 (Deligne Conjecture). For any unital associative k-algebra A, its Hochschild co-
homology complex is a DG algebra over a DG operad which is quasiisomorphic to C q(O2q , k).

This statement has an interesting history. Originally it was a question, not even a conjecture,
asked in 1993 by P. Deligne. Almost immediately it was wrongly proved by Getzler and Jones, and
independently, also wrongly, by A. Voronov. But in 1998, Tamarkin has discovered his amazingly
short proof of the Kontsevich Formality Theorem, which used Deligne conjecture; under close
scrutiny, the mistakes were found, and new complete proofs by several groups of people were
available by 2000 (among those people I should mention at least Tamarkin, Voronov, J. McClure-J.
Smith, and M. Kontsevich-Y. Soibelman). In almost all the proofs, the authors actually construct
a single DG operad which works for all associative algebras, but all of them are rather complicated
and unnatural. The real reason for this is that what acts naturally on Hochschild cohomology is
not an operad but a more complicated object, and this is currently under investigation. However,
for practical purposes such as Formality Theorem, any solution is good, since it can used as a black
box.

Assuming Deligne Conjecture, Tamarkin’s proof of the Formality Theorem is a combination of
the following two results.

Theorem 9.7 (Tamarkin,Kontsevich). The DG operad C q(O2q , k) itself is formal, that is, there
exists a chain of quasiisomorphisms connecting it to the Gerstenhaber operad Gerst

q
= H q(O2q , k).

Theorem 9.8 (Tamarkin). Let A be the polynomial algebra k[x1, . . . , xn] in n variables, equipped
with the natural action of the group GL(n, k) which interchanges the variables. Any DG algebra over
Gerst which is equipped with a GL(n, k)-action and whose cohomology is isomorphic to HH

q
(A) as

a GL(n, k)-equivariant Gerstenhaber algebra is formal.
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It is the second result that was the original discovery of Tamarkin, and its proof was very simple.
But then the problems with Deligne Conjecture appeared... in the course of fixing them, Kontsevich
suggested that the operad C q(O2q , k) itself should be formal, and Tamarkin promptly proved it (but
this proof was combinatorial and not simple at all). Later on, Kontsevich gave a different proof,
also combinatorial. There is also a very simple argument in folklore which deduces Theorem 9.7
from Hodge Theorey, similarly to the classic formality result of Deligne-Griffits-Morgan-Sullivan,
but this, to the best of my knowledge, has never been written down. In any case, one thing
is very important: the quasiisomorphisms in Theorem 9.7, no matter how one produces them,
are very non-trivial, and they usually depend on transcedental things like periods of differential
forms or the so-called “Drinfeld associator”. In addition, there is no canonical choice of these
quasiisomorphisms — one expects that the conjectural “motivic Galois group”, or even the usual
Galois group Gal(Q/Q), acts on the set of these quasiisomorphisms in a very non-trivial way. On
the other hand, the DG operads which appear in the solutions to Deligne Conjecture are quite
canonical, and their action on Hochschild cohomology is elementary and defined over Q.


