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Lectures 3 and 4: Cyclic homology.

Today’s topic is cyclic homology and everything related to it. A very good general reference for the
subject is J.-L. Loday’s book “Cyclic homology”; another old but useful reference is a long paper
“Additive K-theory” by B. Feigin and B. Tsygan in Lecture Notes in Mathematics, vol. 1289.

1.1 Lie algebra of matrices.

Last time, I finished by saying that “all homological invariants of a non-commutative variety should
be contained in the Toën-Vaquié moduli space of perfect objects”. This is a relatively new point
of view. Today, I want to start with a certain explicit computation which is rather old – in fact it
was the origin of cyclic homology in the beginning of 1980es. How one is related to the other is not
completely clear, but we do have a conjectural picture (with many gaps); this I will explain in the
end of the lecture.

So, assume given a unital associative algebra A over a field k of characteristic 0, and consider
the Lie algebra

g = gl∞(A) = lim
n→

gln(A),

the direct limit of the matrix Lie algebras gln(A). What we want to do is to compute Lie algebra
homology H q(g, k) with trivial coefficients.

This computation was done independently by J.-L. Loday and D. Quillen, and B. Tsygan
some time in the early 1980es. The reason the question was interesting then was its relation to
K-theory. By definition, K-theory is related to the infinite discrete group BGL∞(A), but its
homology is very hard to compute, and sometimes – say for unipotent groups – Lie algebra gives
a good approximation to the group. The group BGL∞(A) is very far from unipotent, but let’s do
the computation anyway and see what happens. With hindsight, it seems a rather naive idea, but
it did work – the computation resulted in a real breakthrough.

The computation is done by applying classical invariant theory. We start by considering the
standard Chevalley complex C q(gl∞(A), k); its terms are the exterior powers

Ci(gl∞(A), k) = Λi(gl∞(A)).

To simplify it, we note that

• the adjoint action of a Lie algebra g on its homology is trivial.

This can be proved in many different ways; for example, for any element ξ ∈ g, the Cartan homotopy
formula shows that the action of ξ on H q(g, k) is chain-homotopic to 0. Since A is unital, we have
a natural embedding gl∞(k) ⊂ gl∞(A), and the induced gl∞(k)-action on H q(gl∞(A), k) is also
trivial.

Now, the action of gl∞(k) on gl∞(A) is completely reducible, and so is its action on its tensor
powers and on the terms of the Chevalley complex. Therefore when computing H q(gl∞(A), k),
we may just replace the terms with the invariants of the gl∞(k)-action. Explicitly, the i-th term
becomes

(1.1) (Λigl∞(A))gl∞(k) = (gl∞(A)⊗i ⊗ sgn)
gl∞(k)
Σi

,

where Σi is the permutation group on i letters, and sgn is its one-dimensional sign representation.
Let us first compute the gl∞(k)-invariants. We have

gl∞(A)⊗i = lim
n→

gln(A)⊗i = lim
n→

A⊗i ⊗ End(k⊗i
n ),
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where kn = k⊕n is the sum of n copies of k, and End means endomorphisms as a vector space. The
algebra gl∞(k) only acts on this second factor End(k⊗i

n ), and the invariant theory shows that

lim
n→

End(k⊗i
n )gln(k) = lim

n→
Endgln(k)(k

⊗i
n ) ∼= k[Σi],

the group algebra of the symmetric group Σi, with the conjugation action of Σi (more precisely, all
gln(k)-invariant linear maps k⊗i

n → k⊗i
n are given by linear compositions of permutations of factors

in the tensor product, and if n ≥ i, these permutations are linearly independent). We conclude
that (1.1) is isomorphic to

(A⊗i ⊗ k[Σi]⊗ sgn)Σi
.

Conjugacy classes of permutations σ ∈ Σi are numbered by Young diagrams – this is the cycle
decomposition of a permutation; thus for any representation V of the group Σi, we have a decom-
position

(V ⊗ k[Σi])Σi
∼=

⊕
λ

VStab(λ),

where the sum is over Young diagrams λ, and Stab(λ) ⊂ Σi is the stabilizer of the corresponding
permutation with respect to the conjugation action. For a diagram λ = 〈a1 ≥ a2 ≥ · · · ≥ al〉, we
have

Stab(λ) = ((Z/a1Z)× · · · × (Z/alZ)) o Aut(λ),

where Aut(λ) is equal to
Aut(λ) = Σb1−b2 × · · · × Σbm−1−bm ,

〈b1 ≥ · · · ≥ bm〉 being the dual Young diagram. Applying this to A⊗i ⊗ sgn and summing over i,
we obtain an isomorphism

(1.2) C q(gl∞(A), k)gl∞(k) ∼= S
q
(CC q(A)[1]),

where S
q
stands for graded-symmetric power, and CC q(A) is given by

(1.3) CCi(A) = (A⊗i)Z/iZ.

The cyclic group Z/iZ acts on A⊗i by the longest permutation twisted by (−1)i+1.
This computes the invariant part of the Chevalley complex in a nice and short way. As it turns

out, this is also compatible with the differential. Namely, equip CC q(A) with the differential b
given by the following formula

(1.4) b(a0 ⊗ a1 ⊗ · · · ⊗ ai) =
∑

0≤j<i

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai + aia0 ⊗ · · · ⊗ ai−1.

It is easy to see that b2 = 0, so that CC q(A) becomes a complex; the symmetric power of b is then
a differential on the right-hand side of (1.2).

Proposition 1.1. The isomorphims (1.2) can be chosen so that the Chevalley differential on the
left-hand side is mapped into the differential induced by b on the right-hand side.

Proof. The Chevalley complex of any Lie algebra is naturally a commutative coalgebra. Let us
treat the right-hand side of (1.2) as a free graded commutative coalgebra generated by CC q(A)[1].
We will construct (1.2) as a coalgebra map. Since the right-hand side is free, it is equivalent to
constructing a map of complexes

γ : C q(gl∞(A), k)gl∞(k) → CC q(A)[1].
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Represent elements in gl∞(A) as a⊗m, where a ∈ A, and m ∈ gl∞(k) is a matrix with only finite
number of non-zero entries. Then we can define γ by

γ((a1 ⊗m1) ∧ · · · ∧ (ai ⊗mi)) =
∑
σ∈Σi

(sgn σ) tr(m1 ⊗ · · · ⊗ ai)⊗ (a1 ⊗ · · · ⊗ ai),

where sgn σ is the sign of the permutation σ. It is elementary to check that this commutes with
the differentials and gives an isomorphism (1.2). �

Remark 1.2. In this exposition, I follow B. Feigin and B. Tsygan’s “Additive K-theory”. The
complex CC q(A) was discovered independently by A. Connes and B. Tsygan in about 1981-1982.
For Tsygan, this came out of the computation above. I don’t how Connes discovered it (it looks
like something out of thin air, a stroke of genius). The computation of Loday and Quillen appeared
slightly later, and used Connes’ results.

1.2 Cyclic homology – definitions.

The computation in the last subsection gave a rather strange complex CC q(A). How does one
interpret it? First of all, if one drops the cyclic group invariants in (1.3), then the resulting
complex is very well known.

Definition 1.3. The Hochschild homology complex CH q(A) of an associative algebra A is given by

CH i(A) = A⊗i,

with the differential b given by (1.4). The Hochschild homology HH q(A) of the algebra A is the
homology of the complex CH q(A).

We note that this definition makes sense for an algebra A flat over an arbitrary commutative
base ring k (and in particular, over a field of positive characteristic). Moreover, there is the following
important theorem which allows to compute HH q(A) in the commutative case.

Theorem 1.4 (Hochschild-Kostant-Rosenberg, 1962). Assume that A is a finitely generated
commutative algebra over k, and that X = Spec A is smooth over k. Then there exist canonical
isomorphisms

HHi(A) ∼= Ωi(A/k),

where Ωi(A/k) = ΛiΩ(A/k) are the modules of differential forms. If k contains Q, the isomorphism
can be lifted to a map of complexes P : CH q(A) →

⊕
i Ω

i(A/k)[i] given by

P (a0 ⊗ a1 ⊗ · · · ⊗ ai) =
1

i!
a0da1 ∧ · · · ∧ ai

for any a0 ⊗ · · · ⊗ ai ∈ A⊗i+1. �

(Actually, Hochschild, Kostant and Rosenberg only proved the characteristic 0 part, but the
general case is not much more difficult).

It would be desirable to express the complex CC q(A) in similar terms. To do so, one argues as
follows. In char 0, cyclic groups have no higher homology. So, instead of considering coinvariants
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with respect to the cyclic group, let us consider full group homology, and let us compute it by the
standard periodic complex. The result is the following diagram.

(1.5)

. . . −−−→ A
id−−−→ A

0−−−→ Axb

xb′

xb

. . . −−−→ A⊗ A
id +τ−−−→ A⊗ A

id−τ−−−→ A⊗ Axb

xb′

xb

. . . . . . . . . . . .xb

xb′

xb

. . . −−−→ A⊗n id +τ+···+τn−1

−−−−−−−−−→ A⊗n id−τ−−−→ A⊗nxb

xb′

xb

Here for any i ≥ 1, τ : A⊗i → A⊗i is generator of the group Z/iZ (the longest permutation
multiplied by (−1)i+1). The differential b in odd-numbered columns is the differential (1.4), so that
all odd-numbered columns are copies of the Hochschild homology complex CH q(A). The differential
b′ in even-numbered columns is given by

(1.6) b(a0 ⊗ a1 ⊗ · · · ⊗ ai) =
∑

0≤j<i

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai.

In other words, this is b without the last term. It is easy to see that b′ is actually acyclic; in fact,
it is homotopic to 0, and the contracting homotopy is given by

(1.7) h(a1 ⊗ · · · ⊗ ai) = 1⊗ a1 ⊗ · · · ⊗ ai.

Why we need b′ instead of b is explained by the following strange result.

Lemma 1.5. The diagram (1.5) is a bicomplex (that is, the vertical and the horizontal differential
anticommute).

Proof. Direct computation. �

Definition 1.6. The cyclic homology HC q(A) of the algebra A is the homology of the total complex
of the bicomplex (1.5).

Just as Definition 1.3, this definition makes sense and is valid for any base ring k. If k is a field
of characteristic 0, cyclic homology may be computed by the complex CC q(A).

1.3 Cyclic homology – properties.

We note that the explicit contracting homotopy h of (1.7) allows us to write a slightly smaller
bicomplex which has the same total homology as (1.5) (this is en elementary exercize in linear
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algebra). Namely, we can get rid of all the even-numbered columns. The results is the bicomplex

(1.8)

Axb

A
B−−−→ A⊗2xb

xb

A
B−−−→ A⊗2 B−−−→ A⊗3xb

xb

xb

A
B−−−→ A⊗2 B−−−→ A⊗3 B−−−→ A⊗4,xb

xb

xb

xb

with the horizontal differential B : A⊗n → A⊗(n+1) given by

B = (id−τ) ◦ h ◦ (id +τ + · · ·+ τn−1).

This bicomplex allows for comparison with the Hochschild-Kostant-Rosenberg Theorem, with the
following result.

Lemma 1.7. In the assumptions of HKR Theorem, assume that k contains Q. Then we have

P ◦B = d,

where d is the de Rham differential.

Proof. Direct computation. �

By the HKR Theorem, we also have P ◦ b = 0, so that in the assumptions of the Lemma, the
complex (1.8) is quasiisomorphic to the bicomplex

Ax0

A
d−−−→ Ω1

Ax0

x0

A
d−−−→ Ω1

A
d−−−→ Ω2

Ax0

x0

x0

A
d−−−→ Ω1

A
d−−−→ Ω2

A
d−−−→ Ω3

Ax0

x0

x0

x0

The differential B is called the Connes-Tsygan differential, or the Rinehart differential; it lifts the
de Rham differential to the general non-commutative setting.

Remark 1.8. G. Rinehart was a student of Hochschild who was given the problem of finding the
expression for de Rham differential in terms of Hochschild homology (this was early 1960es, right
after the HKR Theorem). The indended application was to non-smooth commutative algebras A.
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He solved the problem and published it in 1963, in the case of non-smooth commutative algebra A.
After that he didn’t publish much, and actually died quite young. His formula didn’t use commuta-
tivity at all; at the time, no-one cared. This history came to light only after B was rediscovered by
Connes and Tsygan. Ironically, in the case of non-smooth commutative algebras, cyclic homology
has not been really useful (many important results require A to have finite homological dimension).

On obvious feature of the bicomplexes (1.5) and (1.8) is that they are periodic – shifting say
(1.5) by two columns to the left is an endomorphism, and its cone is quasiisomorphic to CH q(A).
This gives the so-called Connes’ long exact sequence

HH q(A) −−−→ HC q(A)
u−−−→ HC q−2 −−−→ ,

where u is the periodicity map. Moreover, we can extend (1.5) also to the right; the result is an
infinite bicomplex, and the cohomology of its total complex is called the periodic cyclic homology
of the algebra A and denote HP q(A). Note that here there is an ambiguity in taking the total
complex – we can either take the sum or the product of the terms. We take the product (if we take
the sum, the result will trivial in char 0). The third possibility is to extend (1.5) to the right but
not to the left – this gives the so-called negative cyclic homology HC−q (A). In all these procedures,
one can of course use (1.8) instead of (1.5) – then u shifts by one column to the left and by one
row downward.

Lemma 1.7 looks especially nice when applied to HP q(A) – it gives an isomorphism

HP q(A) ∼= H
q

DR(Spec A)((u)),

where H
q

DR(−) stands for de Rham cohomology, and ((u)) stands for “formal Laurent series in an
indeterminate u of degree 2”. Thus we can recover the de Rham cohomology of X = Spec A from
the periodic cyclic homology HP q(A), with one note: because of periodicity, we loose the grading
(all that survives is the decomposition into the odd and the even-degree part).

Finally, recall that for a smooth compact algebraic variety X, considering the stupid filtration
on the de Rham complex gives the so-called Hodge-to-de Rham spectral sequence which starts from
Hodge cohomology Hp(X, Ωq) and converges to Hp+q

DR (X). In the non-commutative case, we have
exactly the same thing – taking the stupid filtration on (1.8) in the horizontal direction gives
spectral sequences

(1.9) HH q(A)[u−1] ⇒ HC q(A) HH q(A)((u)) ⇒ HP q(A).

It has been recently proved that if A is replaced by a smooth and compact DG algebra A
q
over a

field k of characteristic 0 which is concentrated in non-negative degrees, then the spectral sequence
degenerates.

1.4 Small category interpretation.

Definitions 1.3 and 1.6 are unsatisfactory in many respects. To begin with, while computing
homological invariants by means of an explicit complex is often unavoidable, it is unpleasant to
have to define them in this way.

For Hochschild homology, there is one obvious improvement of the definition. Namely, denote
by ∆ the category of non-empty finite totally ordered sets; we will denote by [n] ∈ ∆ the set of
integers {1, . . . , n}. Recall that a simplicial object in a category C is a functor from the opposite
category ∆opp to C. If C is abelian, then by a famous theorem of Dold and Kan, there exists an
equivalence

DK : ∆opp(C) ∼= C≥0(C)
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between the category ∆opp(C) of simplicial objects in C and the category C≥0(C) of complexes in C
concentrated in non-negative homological degrees. Moreover, for any M ∈ ∆opp(C), the standard
complex M q is given by Mi = M([i + 1]), with the differential d : Mi → Mi−1 given by

(1.10) d =
∑

1≤j≤i

(−1)jdj,

where dj is the “face map” corresponding to the injective map [i − 1] → [i] whose image does
not contain j. The standard complex M q is not isomorphic to DK(M), but there is a natural
quasiisomorphism between.

Now, our formula (1.4) for the differential b is obviously of the form (1.10), and it is not difficult
to see that the Hochschild homology complex CH q(A) is the standard complex of a canonical
simplicial k-module A] ∈ ∆opp(k-mod) associated to the algebra A.

It was Alain Connes who figured out how to interpret the cyclic homology complex (1.5) in a
similar way. To do this, recall that for any small category I, the category Fun(I, k) of functors
from I to k-mod is abelian, and the direct limit functor from Fun(I, k-mod) to k-mod is right-exact;
taking its derived functors, we obtain the homology of the category I with coefficients in some
E ∈ Fun(I, k-mod):

H q(I, E) = L
q
lim

I→
E.

If I = ∆opp, so that E is a simplicial k-module, then H q(∆opp, E) can be computed by the standard
complex. In the case E = A], this gives

HH q(A) ∼= H q(∆opp, A]).

Connes’ idea is to extend this to HC q(A) by extending the category ∆opp. Namely, he introduced
a special small category known as the cyclic category and denoted by Λ. Objects [n] of Λ are
indexed by positive integers n, just as for ∆opp. Maps between [n] and [m] can be defined in various
equivalent ways; for example, there is the following topological description.

• The object [n] is thought of as a “wheel” – the circle S1 with n distinct marked points,
called vertices (equivalently, a circle with a fixed finite cellular decomposition). A continuous
map f : [n] → [m] is good if it sends marked points to marked points, has degree 1, and
is monotonous in the following sense: for any connected interval [a, b] ⊂ S1, the preimage
f−1([a, b]) ⊂ S1 is connected. Morphisms from [n] to [m] in the category Λ are homotopy
classes of good maps f : [n] → [m].

There are also combinatorial descriptions of the category Λ, or explicit descriptions in terms of
generators and relations. It will be convenient to denote the set of vertices of an object [n] ∈ Λ by
V ([n]). We will also denote by σ : [n] → [n] the rotation of the wheel by 2π

n
.

A moment’s reflection shows that for any [n], [m] ∈ Λ, the set of maps Λ([n], [m]) is a finite
set. Moreover, the category Λ naturally contains ∆opp. Namely, fix an element v ∈ V ([n]) for any
any object [n], and consider only those maps which send the fixed vertex to the fixed vertex; this
defines a subcategory in Λ equivalent to ∆opp.

We now note that for any associative unital algebra A, the simplicial k-module A] extends to a
functor from Λ to k-mod (such functors are called cyclic k-modules). By abuse of notation, we will
still denote the extended functor by A], and we define it as follows. For any [n] ∈ Λ, A#([n]) = A⊗n,
where we think of the factors A in the tensor product as being numbered by vertices v ∈ V ([n]),
and for any map f : [n] → [m], the corresponding map A#(f) : A⊗n → A⊗m is given by

(1.11) A#(f)

 ⊗
i∈V ([n])

ai

 =
⊗

j∈V ([m])

∏
i∈f−1(j)

ai.
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We note that for any j ∈ V ([m]), the finite set f−1(j) has a natural total order given by the
clockwise order on the circle S1. Thus, although A need not be commutative, the product in the
right-hand side is well-defined. If f−1(j) is empty for some j ∈ V ([m]), then the right-hand side
involves a product numbered by the empty set; this is defined to be the unity element 1 ∈ A.

Proposition 1.9. We have a natural functorial isomorphism

(1.12) HC q(A) ∼= H q(Λ, A]).

Proof. We first note that the definition of the bicomplex (1.5) only uses those maps between tensor
powers A⊗

q
that appear as A](f) for various maps f in the category Λ. Thus an analogous complex

can be defined for an arbitrary E ∈ Fun(Λ, k). Denote its homology by HC q(E); all we need to do
is to construct an isomorphism HC q(E) ∼= H q(Λ, E) which is functorial in E. It is easy to construct
a comparison map

ρ : HC0(E) → lim
Λ→

E.

Homology is a derived functor, and HC q(E) is obviously a δ-functor in the sense of Grothendieck
(that is, it has the homology long exact sequence for any short exact sequence in Fun(Λ, k)).
Therefore the map ρ canonically extends to a map (1.12). Then by the long exact sequence, it
suffices to prove that this map is an isomorphism for a set of projective generators of the abelian
category Fun(Λ, k). For example, for any small category I, a good set of projective generators of
the category Fun(I, k) is given by the representable functors kI

i , i ∈ I given by

kI
i (i
′) = k[I(i, i′)].

Thus we may restrict our attention to E ∈ Fun(Λ, k) of the form E = kΛ
[n], [n] ∈ Λ. By general

nonsense, H q(I, ki) = k for any I and i ∈ I, so that for such E, in the right-hand side of (1.12)
we have k in degree 0 and 0 in higher degrees. On the other hand, the action of the cyclic group
Z/mZ generated by the rotation σ ∈ Λ([m], [m]) on Λ([n], [m]) is obviously stabilizer-free, and we
have

Λ([n], [m])/τ ∼= ∆opp([n], [m])

– every f : [n] → [n] can be uniquely decomposed into a map sending the fixed vertex to the fixed
vertex, and a rotation. The rows of the complex (1.5) compute

H q(Z/mZ, k[n]([m])) ∼= k [∆opp([n], [m])] ,

and the first term in the corresponding spectral sequence is the standard complex for k∆
[n] ∈

Fun(∆opp, k). Therefore this complex computes H q(∆opp, k∆opp

[n] ). This is again k in degree 0 and 0
in higher degrees. �

1.5 Morita-invariance.

The definition of HH q(A) and HC q(A) in terms of homology of small categories is still unsatifactory;
in particular, it is not clear whether either of them is Morita-invariant. For Hochschild homology,
there is a well-known alternative definition which makes Morita-invariance obvious.

Consider the category A-bimod = (Aopp ⊗ A)-mod of A-bimodules. This is a unital monoidal
category, with the unit object A (the monoidal structure is given by the tensor product ⊗A). Let
tr : A-bimod → k-mod be the functor given by

tr(M) = M/{am−ma | a ∈ A, m ∈ M}.
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Equivalently, we can define
tr(M) = A⊗Aopp⊗A M,

where A in the right-hand side is understood as a right Aopp⊗A-modules. The functor tr is obviously
right-exact, so we can consider it derived functors.

Lemma 1.10. We have HH q(A) ∼= L
q
tr(A).

Proof. Consider the complex 〈A⊗ q
, b′〉 which appears in even-numbered columns of (1.5). This

complex is acyclic. All its terms are A-bimodules in a natural way, and b′ is an A-bimodule map.
Therefore 〈A⊗≥2, b′〉 gives a free resolution of the zero term A (this is the bar resolution). Applying
tr to this resolution gives the Hochschild homology complex CH q(A). �

Now, if we have two algebras A, B and an equivalence π : A-mod ∼= B-mod, then let P =
π(A) ∈ B-mod be the image of the free A-module A. Since EndB(P ) = EndA(A) = Aopp, P is
actually a module over Aopp ⊗B, and the equivalence is given by

π(M) ∼= P ⊗A B.

Analogously, the inverse equivalence is induced by a Bopp⊗A-module P opp. Then P⊗P opp identifies
the categories of bimodules, and this is compatible with the monoidal structures, the unit objects,
and the functor tr. Hence the derived functors L

q
tr are also identified by π, so that we have

HH q(A) ∼= HH q(B).
In the case of cyclic homology, we do not have such a simple alternative description, and the

one we have is obviously not Morita-invariant on the level of cyclic k-modules – in the assumptions
above, the objects A] and B] are usually different. What we have to do is to show that they become
isomorphic after we apply H q(Λ,−).

One way to do it is to re-interpret A] as something with more structure than just a cyclic k-
module – this is an approach described in my paper arXiv:math/0702068, and I want to give a brief
sketch of it here. The main observation is that for n = 1, A]([1]) = A is naturally an A-bimodule.
Analogously, for any n ≥ 1, A⊗n is a bimodule over the algebra A⊗n.

What about the transition maps A](f) for various maps f : [n] → [m] in the category Λ? The
idea is to associate to any such map a right-exact functor f∗ : A⊗n-bimod → A⊗m. To do this,
note that for any A-bimodules M1, . . . ,Mn ∈ A-bimod which are flat over k, we have a natural
A⊗n-bimodule M1 � · · ·� Mn; by abuse of notation, denote

M1 � · · ·� Mn =
⊗

1≤j≤n

Mj,

let the integers 1, . . . , n number the vertices in V ([n]), and set

f∗

 ⊗
j∈V ([n])

Mj

 =
⊗

j∈V ([m])

∏
i∈f−1(j)

Mi,

where
∏

stands for tensor product over A. This is exactly the same formula as in (1.11), but it
is now applied to the monoidal category A-bimod rather that to the algebra A. Since A-bimod is
a unital monoidal category, and the sets f−1(j) are totally ordered, we again have no problem in
defining the iterated tensor product. It is also not difficult to check that bimodules of the form
M1 � · · ·� Mn generate the category A⊗n-bimod in a suitable sense, and the functor f∗ canonically
extends to a right-exact functor on the whole A⊗n-bimod. For a composable pair of morphisms f ,
g, we have a natural isomorphism f∗ ◦ g∗ ∼= (f ◦ g)∗.

We now introduce the following.
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Definition 1.11. A cyclic A-bimodule M q is a collection of

(i) an A⊗n-bimodule Mn for any [n] ∈ Λ, and

(ii) a map f∗(Mn) → Mm for every map f : [n] → [m] in Λ,

such that for any composable pair of maps f : [n] → [m], g : [m] → [l], the diagram

(g∗ ◦ f∗)(Mn) −−−→ g∗(Mm)y y
(g ◦ f)∗(Mn) −−−→ Ml

is commutative.

One checks that the category A-bimodΛ of cyclic A-bimodules is abelian (this is not difficult,
the main point is that the functors f∗ are right-exact). The object A] has a natural structure of a
cyclic A-bimodule. Moreover, for any [n] ∈ Λ, let trn : A⊗n-bimod → k-mod be the functor defined
by

(1.13) trn(M) = M/{am−mσ(a) | a ∈ A⊗n, m ∈ M},

where σ : A⊗n → A⊗n is the longest cyclic permutation. It is easy to see that for M = M1�· · ·�Mn,
we have a natural isomorphism

trn(M) ∼= tr(M1 ⊗A · · · ⊗A Mn),

and this isomorphism is compatible with a cyclic permutation of M1, . . . ,Mn – it is this trace-
like property of the functor tr which motivates our notation. More generally, the functors trn are
compatible with all the transition functors f∗, and taken together, the functors trn give a right-exact
functor

tr : A-bimodΛ → Fun(Λ, k),

so that we can consider its derived functors L
q
tr. Here is then the main result of the paper

arXiv:math/0702068.

Proposition 1.12. There exists a canonical isomorphism of functors

HC q(A) ∼= H q(Λ, L
q
tr(A])).

The proof is again not difficult but a bit technical, so I refer an interested reader to the original
paper (or to my Tokyo lectures).

At a first glance, the proposition does not give much: to obtain cyclic homology, we still have
to take the homology of the category Λ. However, unlike A] ∈ Fun(Λ, k), the object L

q
tr(A])

in the derived category D(Λ, k) of the category of cyclic k-modules is Morita-invariant. Indeed,
an equivalence π : A-mod ∼= B-mod represented by an Aopp ⊗ B-module P induces equivalences
A⊗n-bimod ∼= B⊗n-bimod, A-bimodΛ ∼= B-bimodΛ, and one easily checks that this equivalence is
compatible with the trace functor tr and sends A] to B]. Thus we obtain a canonical isomorphism
HC q(A) ∼= HC q(B).
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1.6 Cyclic homology as TQFT.

It is interesting to note the following property of the object L
q
tr(A]) of Proposition 1.12: for any

map f : [n] → [m] in Λ, the corresponding transition map

L
q
tr(A])([n]) → L

q
tr(A])([m])

is a quasiisomorphism. In fact, by general nonsense we have

L
q
tr(A])([n]) ∼= L

q
trn(A⊗n),

so that naively, one would expect that L
q
tr(A])([n]) ∼= HH q(A⊗n). However, trn : A⊗n-bimod →

k-mod is not the same as the trace functor for the algebra A⊗n; the reason is the twist by σ in
(1.13). In fact, for every [n] ∈ Λ and any i ≥ 0, we have

Li trn(A⊗n) ∼= HH q(A).

Thus L
q
tr(A]) ⊂ D(Λ, k) actually lies inside the full subcategory

Dconst(Λ, k) ⊂ D(Λ, k)

spanned by objects E ∈ D(Λ, k) which are “locally constant” in the sense that E(f) is a quasiiso-
morphism for any f : [n] → [m].

If a locally constant object E ∈ D(Λ, k) is concentrated in a single homological degree, then it is
simply constant: E ∼= ρ∗M for some k-module M , where ρ : Λ → pt is the tautological projection.
Analogously, for any E q ∈ D(Λ, k), the corresponding functor Ẽ q ∈ Fun(Λ,D(k-mod)) is constant;
in the case E q = L

q
tr(A]), we have

Ẽ q ∼= ρ∗CH q(A).

However, an object of the derived category of functors contains strictly more information than a
functor into the derived category. It is this extra information that remembers the Connes-Tsygan
differential B and the Hodge-to-de Rham spectral sequence (1.9).

Here are some alternative equivalent descriptions of the category Dconst(Λ, k).

(i) Let DF(k-mod) be the filtered derived category of the category of k-modules, – that is, the
category obtained from the category of filtered complexes of k-modules by inverting the
quasiisomorphisms which are strictly compatible with the filtration, – and let DFper(k-mod)
be its periodic version – namely, the category of filtered complexes K q of k-modules equiped
with a quasiisomorphism K q ∼= K q[2](1), where (1) means the renumbering of the filtration
by 1. Then Dconst(Λ, k) ∼= DF(k-mod). The equivalence sends E ∈ Dconst(Λ, k) to H q(Λ, E)
with the filtration F

q
induced by the spectral sequence (1.9).

(ii) Dconst(Λ, k) is also equivalent to the derived category of complexes of sheaves of k-modules
on CP∞ with locally constant homology sheaves.

(iii) Consider the equivariant derived category DU(1)(pt) of U(1)-equivariant sheaves of k-modules
on a point. Then Dconst(Λ, k) is equivalent to the full triangulated subcategory spanned by
the trivial object k.

Informally, one can treat an object E q ∈ Dconst(Λ, k) as a “topological quantum field theory in
dim 1” – one associates a complex E q([n]) to any compact 1-manifold equipped with a cellular
decomposition, and a quasiisomorphism E(f) for any “good” map f between such manifolds, and
this is “lifted to the derived category level” in the appropriate sense. Such a structure can be treated
as an additional structure on the complex E q([1]). However, all the non-triviality is really contained
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in the “lifting to the derived category level”. In the equivariant derived category interpretation of
Dconst(Λ, k), one can also say that cyclic homology appears because of “U(1)-action on HH q(A)”
(but again, this has to be understood in the derived category sense).

From this perspective, it seems natural to try to expand the definition of a “good” map and
consider maps between circles with marked point which do not correspond to maps in the category
Λ. I know of only such result: étale degree-p coverings U(1) → U(1) turn out to be very helpful in
the study of cyclic homology over a field of characteristic p, since they control the so-called Cartier
isomorphism, a version of the Frobenius action on de Rham cohomology. However, this is only
useful in positive characteristic, or over Zp.

1.7 Moduli space of perfect objects.

Let me now return to what I started with: the Toën-Vaquié moduli space of perfect objects in a
derived category D(A

q
).

First of all, let me mention that all the today’s results and constructions immediately generalize
to DG algebras: all one needs to do is to plug in a associative DG algebra A

q
instead of an

associative algebra A (and maybe take the total complex of a tricomplex instead of a bicomplex
whenever necessary). This also holds for the results about Morita-invariance: although there may
exist an equivalence D(A

q
) ∼= D(B

q
) between derived categories of two DG algebras which is not

induced by a kernel P ∈ D(A
qopp⊗B

q
), such an equivalence is “bad” anyway – it is only the functors

which are given by kernels that should be considered as maps in non-commutative geometry. To
sum up: for any DG algebra A

q
, we have functorial homology groups HH q(A q

), HC q(A q
), HP q(A q

),
HC−q (A

q
); all these groups are derived Morita-invariant, and they are related by the same exact

and spectral sequences as in the algebra case.
Now, as I have mentioned earlier, for any saturated DG algebra A

q
, Toën and Vaquier define the

“moduli space of perfect DG A
q
-modules”, denoted by M(A

q
). This is not an algebraic variety but

a more complicated gadget called “smooth D−-stack” (subject of the so-called “derived algebraic
geometry”). However, it is close enough to usual algebraic varieties so that it has various types of
cohomology that algebraic varieties have. In particular, one can define the de Rham cohomology
H

q
DR(M(A

q
)). Here is the main conjecture.

Conjecture 1.13. Assume that k is a field of characteristic 0. Then there exists a functor HP q(−)
from the category of DG algebras over k up to Morita-equivalence to D(k) such that

(i) HP q(−) is equipped with a functorial periodicity map u : HP q(−) → HP q−2(−) and a func-
torial map HP q(−) → HP q(−) of k[u]-modules,

(ii) the induced map

(1.14) HP q(A q
)(u−1) = lim

u→
HP q(A q

) → HP q(A q
)

is a quasiisomorphism, and

(iii) there exists a functorial isomorphism

H
q

DR(M(A
q
)) ∼= S

q (
HP q(A q

)
)∗

for any saturated DG algebra A
q
.

This conjecture is a slight refinement and/or reformulation of a conjecture made by B. Toën
and mentioned by M. Kontsevich and Ya. Soibelman.
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We note that the appearance of symmetric power in (iii) is very natural: the moduli space
M(A

q
) has a structure of a “commutative h-space” induced by the direct sum on the category

D(A
q
), and one expects its cohomology to be a commutative cocommutative Hopf algebra, thus a

free commutative coalgebra. The interesting invariants are the primitive elements with respect to
the coalgebra structure. In the language of rational homotopy theory, these correspond to homotopy
rather than homology of M(A

q
), and it is these groups that are expected to coincide with HP q(A q

).
We also note that it is obviously necessary to introduce an axiliary theory HP q(−), since de Rham
cohomology is by definition non-trivial only in positive degrees, while HP q(−) is 2-periodic. The
interpretation of the periodicity map u in terms of M(A

q
) is known, at least in some cases, but it

is very non-trivial; roughly speaking, it corresponds to the “Bott periodicity element” in algebraic
K-theory.

As it happens, when k = C, the moduli space M(A
q
) also has what one can call “Betti

cohomology” – that is, one can define the underlying analytic space of M(A
q
) and consider its

cohomology in the usual topological sense. There is also a comparison theorem which says that
Betti cohomology with coefficients in C coincides with the de Rham cohomology. As a result,
HP q(A q

) acquires a real structure. This real structure can be transported to HP q(A q
) by the

isomorphism (1.14). Then there is the following further conjecture.

Conjecture 1.14. Assume that k = C and the DG algebra A
q
is saturated. Then the natural map

HP i(A
q
) → HPi(A

q
) is injective for any i. Moreover, let

WiHP q(A q
) = uiHP q(A q

) ⊂ HP q(A q
),

and let F
q
HP q(A q

) be the natural descreasing filtration induced by the Hodge-to-de Rham spectral
sequence (1.9). Then for any integer i, the triple

〈HPi(A
q
), F

q
, W q〉

together with the real structure on W q(A q
) is a pure R-Hodge structure of weight −i.

At present, we have no evidence for Conjecture 1.14 (properly speaking, it should be called a
“hope” rather than a “conjecture”). The only reason to hope is that in the p-adic setting, a p-adic
analog of the notion of a Hodge structure does exist on HP q(A q

). As for Conjecture 1.13, again,
there is no direct evidence, except for some related results of Friedlander in the case D

q
(A

q
) = D(X)

for some smooth projective algebraic variety X (which basically prove a similar statement with de
Rham cohomology replaced by Betti cohomology). However, there is the folllowing intriguing
analogy with the computation I have started with – namely, with that of H q(gl∞(A), k).

For simplicity, let us take A
q
= A, an associative algebra placed in degree 0, and let us assume

that it is finite-dimensional over k. The moduli space M(A) then parametrizes all finite-length
complexes of finitely generated projective A-modules. Let

Mfree(A) ⊂M(A)

be the subspace parametrizing complexes of free A-modules, and let

Mfree
(A) ⊂Mfree(A)

be the subspace paramterizing those complexes that are actualy concentrated in degree 0. Then

Mfree
(A) is easy to describe: this is an Artin stack given by

Mfree
(A) =

∐
n

[pt /GLn(A)],
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where GLn(A) is the algebraic group of n × n-matrices with entries in A. Direct sum of free A-
modules induces a structure of a symmetric h-monoid on this stack. Then the first expectation is
that passage to Mfree(A) corresponds to the “group completion” of this monoid in the sense of
algebraic topology, and on the level of de Rham cohomology, we have

H
q

DR(Mfree(A)) = lim
←

H
q

DR([pt /GLn(A)]).

Roughly speaking, the right-hand side is the “de Rham cohomology of the stack [pt /GL∞(A)]”.
Passing from Mfree(A) to M(A) corresponds to adding the images of projectors, and the second
expectation is that it does not change the de Rham cohomology too much – if we are very lucky,
the change is only in degree 0. Thus finally, what we end up with is complex of primitive elements
in the de Rham cohomology of the stack [pt /GL∞(A)]. We can now replace the stack with its
loop space in the sense of algebraic topology – on the space of primitive elements, this corresponds
simply to a shift by 1. This reduces the problem to studying the de Rham cohomology

H
q

DR(GL∞(A)) = lim
←

H
q

DR(GLn(A)),

where GLn(A) is considered simply as an algebraic variety.
Now, the de Rham complex of an algebraic group G actually coincides with

C
q
(g,OG),

the Chevalley complex of its Lie algebra g with coefficients in the algebra OG of functions on G.
Thus (iii) of Conjecture 1.13 reduces to

H
q
(gl∞(A),OGL∞(A)) ∼= S∗(HP q(A))∗.

And this is already a formula of the type (1.2). In fact, the only difference is coefficients: in (1.2),
the coefficients are simply the trivial gl∞(A)-module k, and here it is replaced with OGL∞(A). It is
hoped that, nevertheless, one can still compute the cohomology by some sort of invariant theory
procedure, and the result is an expression for HP q(A) similar to the complex CC q(A) for HC q(A).


