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Lecture 1.
The subject of Non-commutative geometry. Notions of a non-commutative
geometry. Dictionary between notions from calculus and homological in-
variants. Hochschild Homology and Cohomology. Hochschild-Kostant-
Rosenberg Theorem. Bar-resolution and the Hochschild complex. Cyclic
homology (explicit definition).

1.1 The subject of Non-commutative Geometry.

It is an empirical fact that the idea of “non-commutative geometry”, when seen for the first time,
is met with deep scepticism (at least, this was my personal reaction for 10 years or so). Let me
start these lectures with a short justification of the subject.

Back in the nineteenth century, and today in high school math, geometry was essentially set-
theoretic: the subject of geometry was points, lines (sets of points of special types), and so on.
This approach has been inherited by early algebraic geometry – instead of lines we maybe consider
curves of higher degree, or higher-dimensional algebraic varieties, but we still think of them as sets
of points with some additional structure.

However, starting from mid-twentieth century, and especially in the work of Grothendieck, a
new viewpoint appeared, which can be loosely termed “categorical”: one thinks of an algebraic
variety simply as an object of the category of algebraic varieties. The precise “inner structure” of
an algebraic variety is not so important anymore – what is important is how it behaves with respect
to other varieties, what maps to or from other varieties does it admit, and so on. “Set of points”
is just one functor on the category of algebraic varieties that we can use to study them; there are
other important functors, such as, for instance, various cohomology theories.

These two “dual” approaches to algebraic geometry are not mutually exclusive, but rather
complementary, and somewhat competing. To give you a non-trivial example, let us consider the
Minimal Model Program. Here two methods of studying an algebraic variety X proved to be
very successful. One is to study rational curves on X, their families, subvarieties they span etc.
The other is to treat X as a whole and obtain results by considering its cohomology with various
coefficients and using Vanishing Theorems. For example, the Cone Theorem claims that a certain
part of the ample cone of X is polyhedral, with faces dual to certain classes in H2(X) called
“extremal rays”. If X is smooth, the Theorem can be proved by the “bend-and-break” techniques;
extremal rays emerge as fundamental classes of certain rational curves on X. On the other hand, the
Cone Theorem can be proved essentially by using consistently the Kawamata-Viehweg Vanishing
Theorem; this only gives extremal rays as cohomology classes, with no generating rational curves,
but it works in larger generality (for instance, for a singular X).

Now, the idea of “non-commutative” geometry is, in a nutshell, to try to replace the notion
of an affine algebraic variety X = Spec A with something which would make sense for a non-
commutative ring A. The desire to do so came originally from physics – one of the ways to
interpret the formalism of quantum mechanic is to say that instead of the algebra of functions
on a symplectic manifold M (“the phase space”), we should consider a certain non-commutative
deformation of it. Mathematically, the procedure seems absurd. In order to define a spectrum
Spec A of a ring A, you need A to be commutative, otherwise you cannot even define “points”
of Spec A in any meaningful way. Thus the set-theoretic approach to non-commutative geometry
quickly leads nowhere.

However, and this is somewhat surprising, the categorical approach does work: much more
things can be generalized to the non-commutative setting than one had any right to expect before-
hand. Let us list some of these things.
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(i) Algebraic K-theory.

(ii) Differential forms and polyvector fields.

(iii) De Rham differential and de Rham cohomology, Lie bracket of vector fields, basic formalism
of differential calculus.

(iv) Hodge theory (in its algebraic form given by Deligne).

(v) Cartier isomorphisms and Frobenius action on cristalline cohomology in positive characteris-
tic.

Of these, the example of K-theory is the most obvious one: Quillen’s definition of the K-theory
of an algebraic variety X = Spec A involves only the abelian category A-mod of A-modules, and
it works for a non-commutative ring A without any changes whatsoever. Before giving the non-
commutative versions of the other notions on the list, however, we need to discuss more precisely
what we mean by “non-commutative setting”.

1.2 The notion of a non-commutative variety.

Actually, there are several levels of abstraction at which non-commutative geometry can be built.
Namely, we can take as our definition of a “non-commutative variety” one of the following four.

(1) An associative ring A.

(2) A differential graded (DG) algebra A
q
.

(3) An abelian category C.

(4) A triangulated category D “with some enhancement”.

The relation between these levels is not linear, but rather as follows:

(1.1)

(1) −−−→ (2)y y
(3) −−−→ (4).

Given an associative ring A, we can treat it as a DG algebra placed in degree 0 – this is the
correspondence (1) ⇒ (2). Or else, we can consider the category A-mod of left A-modules – this
is the correspondence (1) ⇒ (3). Given a DG algebra A

q
, we can construct the derived category

D(A
q
) of left DG A

q
-modules, and given an abelian category C, we can consider its derived category

D(C) – this is (2) ⇒ (4) and (3) ⇒ (4).
Of course, in any meaningful formalism, the usual notion of a (commutative) algebraic variety

has to be included as a particular case. In the list above, (1) is the level of an affine algebraic
variety X = Spec A. Passing from (1) to (3) gives the category of A-modules, or, equivalently, the
category of quasicoherent sheaves on X. This makes sense for an arbitrary, not necessarily affine
scheme X – thus on level (3), we can work with any scheme X by replacing it with its category of
quasicoherent sheaves. We can then pass to level (4), and take the derived category D(X).

What about (2)? As it turns out, an arbitrary scheme X also appears already on this level: the
derived category D(X) of quasicoherent sheaves on X is equivalent to the derived category D(A

q
)

of a certain (non-canonical) DG algebra A
q
. The rough slogan for this is that “every scheme is

derived-affine”.
Here are some other examples of non-commutative varieties that one would like to consider.
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(i) Given a scheme X, one can consider a coherent sheaf A of algebras on X and the category
of sheaves of A. This is only “slightly” non-commutative, in the sense that we have an
honest commutative scheme, and the non-commutative algebra sheaf is of finite rank over the
commutative sheaf OX (e.g. if X = Spec B is affine, then A comes from a non-commutative
algebra which has B lying its center, and is of finite rank over this center). However, there
are examples where this is useful. For instance, in the so-called non-commutative resolutions
introduced by M. Van den Bergh, X is usually singular; generically over X, A is a sheaf
of matrix algebras, so that its category of modules is equivalent to the category of coherent
sheaves on X, but near the singular locus of X, A is no longer a matrix algebra, and it is
“better behaved” than OX – e.g. it has finite homological dimension.

(ii) Many interesting categories come from representation theory – representation of a Lie algebra,
or of a quantum group, or versions of these in finite characteristic, and so on. These have
appeared prominently, for examples, in the recent works of R. Rouquier.

(iii) In sympletic geometry, there is the so-called Fukaya category and its versions (e.g. the
“Fukaya-Seidel category”). These only exist at level (4) above, and they are very hard to
handle; still, the fully developed theory should apply to these categories, too.

Let us also mention that even if one is only interested in the usual schemes X, looking at them
non-commutatively is still non-trivial, because there are more maps between schemes X, X ′ when
they are considered as non-commutative varieties. E.g. on level (4), a map between triangulated
categories is essentially a trinagulated functor, or maybe a pair of adjoint triangulated functors,
depending on the specific formalism used – but in any approach, a Fourier-Mukai transform, for
instance, gives a well-defined non-commutative map. Flips and flops in the Minimal Model Program
are also expected to give non-commutative maps.

Passing to a higher level of abstraction in (1.1), we lose some information. A single abelian
category can be equivalent to the category of modules for different rings A (this is known as
Morita equivalence – e.g. a commutative algebra A is Morita-equivalent to its matrix algebra
Mn(A), for any n ≥ 2). And a single triangulated category can appear as the derived category of
quasicoherent sheaves on different schemes (e.g. related by the Fourier-Mukai transform) and the
derived category of DG modules over different DG algebras (e.g. related by Koszul duality, the DG
version of Morita equivalence). However, it seems that the information lost is inessential; especially
if we think of various homological invariants of a non-commutative variety, they all are independent
of the specifics lost when passing to (4). While this is not a self-evident first principle but rather
an empirical observation, it seems to hold – again as a rough slogan, “non-commutative geometry
is derived Morita-invariant”. Thus it would be highly desirable to develop the theory directly on
level (4) and not bother with inrelevant data.

However, at present it is not possible to do this. The reason is the well-known fact that the
notion of triangulated category is “too weak”. Here are some instances of this.

(i) “Cones are not functorial”. Thus for a triangulated category D, the category of functors
Fun(I,D) for even the simplest diagrams I – e.g. the category of arrows in D – is not
triangulated.

(ii) Triangulated categories do not patch together well. For instance, if we are given two trian-
gulated categories D1, D2 equipped with triangulated functors to a triangulated category D,
the fibered product D1 ×D D2 is not triangulated.

(iii) Given two triangulated categories D1, D2, the category of triangulated functors Funtr(D1,D2)
is not triangulated.



Homological methods in Non-commutative Geometry – Tokyo, 2007/2008 4

It is the consensus of all people working in the field that the correct notion is that of a triangulated
category with some additional structure, called “enhancement”; however, there is no consensus as
to what a convenient enhancement might be, exactly. Popular candidates are “DG-enhancement”,
“A∞-enhancement” and “derivator enhancement”. Within the framework of these lectures, let me
just say that the only sufficiently developed notion of enhancement seems to be the DG approach,
but using it is not much different from simply working in the context of DG algebras, that is, on
our level (2).

Thus is the present course, we will not attempt to work in the full generality of (4) – we will
start at (1), and then maybe go to (2) and/or (3).

However, it is important to keep in mind that (4) is the correct level. In particular, every-
thing should and will be “derived-Morita-invariant” – DG algebras or abelian categories that have
equivalent derived categories are indistinguishable from the non-commutative point of view.

1.3 A dictionary.

Let us now give a brief dictionary between some notions of algebraic geometry and their non-
commutative counterparts. We will only do it in the affine case (level (1)). For convenience, we
have summarized it in table form.

An affine scheme X = Spec A An associative algebra A
X is smooth A has finite homological dimension

Differential forms Ω
q
(X) Hochschild homology classes HH q(A)

Polyvector fields Λ
qT (X) Hochschild cohomology classes HH

q
(A)

De Rham differential d Connes’ differential B
De Rham cohomology H

q
DR(X) Cyclic homology HC q(A), HP q(A)

Schouten bracket Gerstenhaber bracket
Hodge-to-de Rham spectral sequence Hochschild-to-cyclic spectral sequence

Cartier isomorphisms A non-commutative version thereof

Here are some comments on the table.

(i) Polyvector fields are sections of the exterior algebra Λ
qT (X) generated by the tangent bundle

T (X), and Schouten bracket is a generalization of the Lie bracket of vector field to polyvector
fields. It seems that in non-commutative geometry, it is not possible to just consider vector
fields – all polyvector fields appear together as a package.

(ii) Similarly, multiplication in de Rham cohomology seems to be a purely commutative phe-
nomenon – in the general non-commutative setting, it does not exist.

(iii) The first line corresponds to a famous theorem of Serre which claims that the category of
coherent sheaves on a scheme X has finite homological dimension if and only if X is regular.
In the literature, some alternative notions of smoothness for non-commutative varieties are
discussed; however, we will not use them.

(iv) The last line takes place in positive characteristic, that is, for schemes and algebras defined
over a field k with p = char k > 0.

All the items in the left column are probably very familiar (expect for maybe the last line, which
we will explain in due course). The notions in the right column probably are not familiar. In the
first few lectures of this course, we will explain them. We start with Hochschild Homology and
Cohomology.
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1.4 Hochschild Homology and Cohomology.

Assume given an associative unital algebra A over a field k.

Definition 1.1. Hochschild homology HH q(A) of the algebra A is given by

(1.2) HH q(A) = TorAopp⊗Aq (A, A).

Hochschild cohomology HH
q
(A) of the algebra A is given by

(1.3) HH
q
(A) = Ext

q
Aopp⊗A(A, A).

Here Aopp is the opposite algebra to A – the same algebra with multiplication written in the
opposite direction (if A is commutative, then Aopp ∼= A, but in general they might be different).
Left modules over Aopp ⊗ A are the same as bimodules over A, and A has a natural structure of
A-bimodule, called the diagonal bimodule – this is the meaning of A in (1.3) and in the right-hand
side of Tor q(−,−) in (1.2). However, A also has a natural structure of a right module over Aopp⊗A
– and this is what we use in the left-hand side of Tor q(−,−) in (1.2).

We note that by definition HH
q
(A) is an algebra (take the composition of Ext

q
-s), and HH q(A)

has a natural structure of a right module over HH
q
(A). In general, neither of them has a structure

of an A-module.
Given an A-bimodule M , we can also define Hochschild homology and cohomology with coeffi-

cients in M by setting

HH q(A, M) = TorAopp⊗Aq (A, M), HH
q
(A, M) = Ext

q
Aopp⊗A(A, M).

In particular, HH q(A,−) is the derived functor of the left-exact functor A-bimod → k -Vect from
A-bimodules to k-vector spaces given by M 7→ A ⊗Aopp⊗A M . Equivalently, this functor can be
defined as follows:

M 7→ M/{am−ma | a ∈ A, m ∈ M}.
The reason Hochschild homology and cohomology is interesting – and indeed, the starting point for
the whole brand of non-commutative geometry which we discuss in these lecture – is the following
classic theorem.

Theorem 1.2 (Hochschild-Kostant-Rosenberg, 1962). Assume that A is commutative, and
that X = Spec A is a smooth algebraic variety of finite type over k. Then there exist isomorphisms

HH q(A) ∼= Ω
q
(X), HH

q
(A) ∼= Λ

qT (X),

where Ω
q
(A) are the spaces of differential forms on the affine variery X, and Λ

qT (A) are the spaces
of polyvector fields – the sections of the exterior powers of the tangent sheaf T (X).

Proof. To compute HH q(A) and HH
q
(A), we need to find a convenient projective resolution of the

diagonal bimodule A. Since A is commutative, we can identify A and Aopp, so that A-bimodules
are the same as A ⊗ A-modules. Let I ⊂ A ⊗ A be the kernel of the natural surjective map
m : A ⊗ A → A, m(a1 ⊗ a2) = a1a2. Then I is an ideal in A ⊗ A, and by definition, the module
Ω1(A) of 1-forms on A is equal to the quotient I/I2. Thus we have a canonical surjective map

η : I → Ω1(A).

Since X = Spec A is smooth of finite type, Ω1(A) is a projective A-module. Therefore, if consider
the A-bimodule I as an A-module by restriction to one of the factors in A ⊗ A – say the second
one – then the map η admits a splitting map Ω1(A) → I, which extends to a map

s : A⊗ Ω1(A) → I
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of A-bimodules. But the A-bimodule A ⊗ Ω1(A) is projective; thus we can let P0 = A ⊗ A,
P1 = A⊗ Ω1(A), and we have a start of a projective resolution

P1
s−−−→ P0

m−−−→ A

of the diagonal bimodule A. Extend it to a “Koszul complex” P q by setting Pi = Λi
A⊗A(P1), i ≥ 0,

and extending s to a derivation d : P q+1 → P q of this exterior algebra. This gives a certain complex
P q, and it well-know that

P q is a resolution of A outside of a certain Zariski-closed subset Z ⊂ X ×X which does
not intersect the diagonal.

Therefore the complex P q can be used to compute HH q(A) and HH
q
(A); doing this gives the

desired isomorphism. �

Exercise 1.1. Show that the isomorphisms in Theorem 1.2 are canonical.

We note that this proof does not need any assumptions on characteristic (the original proof of
Hochschild-Kostant-Rosenberg was slightly different, and it only worked in characteristic 0).

1.5 The bar resolution and the Hochschild complex.

The Koszul resolution is very convenient, but it only exists for a smooth commutative algebra A.
We will now introduce another resolution for the diagonal bimodule called the bar resulution which
is much bigger, but exists in full generality. This gives a certain large but canonical complex for
computing HH q(A) and HH

q
(A).

The bar resolution C q(A) starts with the same free A-bimodule C0(A) = A ⊗ A as the Koszul
resolution. Since we want the resolution to exist for any A, there is not much we can build upon
to proceed to higher degrees – we have to use A itself. Thus for any n ≥ 1, we let

Cn(A) = A⊗(n+2) = A⊗ A⊗n ⊗ A,

the free A-bimodule generated by the k-vector space A. The differential Cn+1(A) → Cn(A) is
denoted b′ for historical reasons, and it is given by

(1.4) b′ =
n+2∑
i=1

(−1)i id⊗i⊗m⊗ id⊗n+2−i,

where, as before, m : A ⊗ A → A is the multiplication map. We note that b′ is obviously an
A-bimodule map.

There is also a version with coefficients: assume given an A-bimodule M , and denote the A-
action maps A⊗M → M , M⊗A → M by the same letter m. Then we let Cn(A, M) = A⊗(n+1)⊗M ,
n ≥ 0, and we define the map b′ : Cn+1(A, M) → Cn(A, M) by the same formula (1.4).

Lemma 1.3. For any A, M , the complex 〈C q(A, M), b′〉 is a resolution of the bimodule M .

Proof. The fact that b′ squares to 0 is a standard computation which we leave as an exersize (it also
has an explanation in terms of simplicial sets which we will give later). To prove that C q(A, M) is
a resolution, extend it to a complex C ′q(A, M) by shifting the degree by 1 and adding the term A
– that is, we let

C ′
n(A, M) = A⊗n ⊗M
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for n ≥ 0, with the differential b′ given by the same formula (1.4). Then we have to prove that
C ′q(A, M) is acyclic. But indeed, the map h : C ′q(A, M) → C ′q+1(A, M) given by

h(a0 ⊗ · · · ⊗ an) = 1⊗ a0 ⊗ · · · ⊗ an,

obviously satisfies h ◦ b′ + b′ ◦ h = id, thus gives a contracting homotopy for C ′q(A, M). �

Exercise 1.2. Show that for any A-bimodule M , the bimodule A⊗M is acyclic for the Hochschild
homology functor (that is, HHi(A, A⊗M) = 0 for i ≥ 1). Hint: compute HHi(A, A⊗M) by using
the bar resolution for the right Aopp ⊗ A-module A in the left-hand side of TorAopp⊗Aq (A, A⊗M).

By virtue of Exercise 1.2, the resolution C q(A, M) can be used for the computation of the
Hochschild homology groups HH q(A, M). This gives a complex whose terms are also given by
A⊗n ⊗M , n ≥ 0, but the differential is given by

(1.5) b = b′ + (−1)n+1t,

with the correction term t being equal to

t(a0 ⊗ · · · ⊗ an+1 ⊗m) = a1 ⊗ · · · ⊗ an+1 ⊗ma0

for any a0, . . . , an+1 ∈ A, m ∈ M . This is known as the Hochschild homology complex.
Geometrically, one can think of the components a0, . . . , an−1, m of some tensor in A⊗n ⊗ M

as having been placed at n + 1 points on the unit interval [0, 1], including the egde points 0, 1 ∈
[0, 1]; then each of the terms in the differential b′ corresponds to contracting an interval between
two neighboring points and multiplying the components sitting at its endpoints. To visualize the
differential b in a similar way, one has to take n + 1 points placed on the unit circle S1 instead of
the unit interval, including the point 1 ∈ S1, where we put the component m.

1.6 Cyclic homology – explicit definition.

In the case M = A, the terms in the Hochschild homology complex are just A⊗n+1, n ≥ 0, and they
acquire an additional symmetry: we let τ : A⊗n+1 → A⊗n+1 to be the cyclic permutation multiplied
by (−1)n. Note that in spite of the sign change, we have τn+1 = id, so that it generates an action
of the cyclic group Z/(n + 1)Z on every A⊗n+1. The fundamental fact here is the following.

Lemma 1.4. For any n, we have

(id−τ) ◦ b′ = −b ◦ (id−τ),

(id +τ + · · ·+ τn−1) ◦ b = −b′ ◦ (id +τ + · · ·+ τn)

as maps from A⊗n+1 to A⊗n.

Proof. Denote mi = idi⊗m ⊗ idn−i : A⊗n+1 → A⊗n, 0 ≤ i ≤ n − 1, so that b′ = m0 −m1 + · · · +
(−1)n−1mn−1, and let mn = t = (−1)n(b− b′). Then we obviously have

mi+1 ◦ τ = τ ◦mi

for 0 ≤ i ≤ n− 1, and m0 ◦ τ = (−1)nmn. Formally applying these identities, we conclude that

(1.6)

∑
0≤i≤n

(−1)imi ◦ (id−τ) =
∑

0≤i≤n

(−1)imi −m0 −
∑

1≤i≤n

(−1)iτ ◦mi−1

= −(id−τ) ◦
∑

0≤i≤n−1

(−1)imi,
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(1.7)

b′ ◦ (id +τ + · · ·+ τn) =
∑

0≤i≤n−1

∑
0≤j≤n

(−1)imi ◦ τ j

=
∑

0≤j≤i≤n−1

(−1)iτ j ◦mi−j +
∑

1≤i≤j≤n

(−1)i+nτ j−1 ◦mn+i−j

= −(id +τ + · · ·+ τn−1) ◦ b,

which proves the claim. �

As a corollary, the following diagram is in fact a bicomplex.

(1.8)

. . . −−−→ A
id−−−→ A

0−−−→ Axb

xb′

xb

. . . −−−→ A⊗ A
id +τ−−−→ A⊗ A

id−τ−−−→ A⊗ Axb

xb′

xb

. . . . . . . . . . . .xb

xb′

xb

. . . −−−→ A⊗n id +τ+···+τn−1

−−−−−−−−−→ A⊗n id−τ−−−→ A⊗nxb

xb′

xb

Here it is understood that the whole thing extends indefinitely to the left, all the even-numbered
columns are the same, all odd-numbered columns are the same, and the bicomplex is invariant with
respect to the horizontal shift by 2 columns.

Definition 1.5. The total homology of the bicomplex (1.8) is called the cyclic homology of the
algebra A, and denoted by HC q(A).

We see right away that the first, the third, and so on column when counting from the right
is the Hochschild homology complex computing HH q(A), and the second, the fourth, and so on
column is the acyclic complex C ′q(A). (the top term is A, and the rest is the bar resolution for A).
Thus the spectral sequence for this bicomplex has the form

(1.9) HH q(A)[u−1] ⇒ HC q(A),

where u is a formal parameter of cohomological degree 2, and HH q(A)[u−1] is shorthand for “poly-
nomials in u−1 with coefficients in HH q(A)”. This is known as Hochschild-to-cyclic, or Hodge-to-de
Rham spectral sequence (we will see in the next lecture that it reduces to the usual Hodge-to-de
Rham spectral sequence in the smooth commutative case).

Shifting (1.8) to the right by 2 columns gives the periodicity map u : HC q+2(A) → HC q(A),
which fits into an exact triangle

(1.10) HH q+2 −−−→ HC q+2(A) −−−→ HC q(A) −−−→ ,

known as the Connes’ exact sequence. One can also invert the periodicity map – in other words,
extend the bicomplex (1.8) not only to the left, but also to the right. This gives the periodic cyclic
homology HP q(A). Since the bicomplex for HP q(A) is infinite in both directions, there is a choice
involved in taking the total complex: we can take either the product, or the sum of the terms. We
take the product.
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Remark 1.6. The n-th row of the complex (1.8) is the standard complex which computes the
homology H q(Z/nZ, A⊗n) of the cyclic group Z/nZ. In the periodic version, we have the so-called
Tate homology instead of the usual homology. It is known that, Z/nZ being finite, Tate homology is
always trivial over a base field of characteristic 0. Were we to take the sum of terms of the periodic
bicomplex instead of the product in the definition of HP q(A), the corresponding spectral sequence
would have converged, and the resulting total complex would have been acyclic. This is the first
instance of an important feature of the theory of cyclic homology: convergence or non-convergence
of various spectral sequences is often not automatic, and, far from being just a technical nuissance,
has a real meaning.


