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LCK manifolds

DEFINITION: A locally conformally Kähler (LCK) manifold is a complex

Hermitian manifold, with a Hermitian form ω satisfying dω = ω ∧ η, where η

is a closed, non-exact 1-form, called the Lee form of M .

REMARK: A compact LCK manifold never admits a Kähler structure.

REMARK: Suppose M is a compact complex manifold. Existence of a Kähler

structure gives all kinds of constrains on topology of M (even-dimensionality

if Hodd(M), strong Lefschetz, homotopy formality).

QUESTION: What can we say about topology of M, if M is LCK?

REMARK: LCK manifolds are not necessarily homotopy formal. A

Heisenberg manifold (also known as Kodaira surface) is not homotopy formal

(it has non-vanishing Massey products), but it is LCK.
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Conjectures about LCK manifolds

REMARK: Izu Vaisman conjectured that for a compact LCK manifold,

h1(M) odd (disproven by Oeljeklaus and Toma, 2005)

REMARK: Izu Vaisman also conjectured that no compact LCK manifold can

be homotopy equivalent to a Kähler manifold (still unknown).

OBSERVATION: All complex surfaces admitting LCK structures are known,

except Kodaira class VII surfaces. For Kodaira class VII with b2 = 0, LCK

structures are known to exist on two types of Inoue surfaces (Tricerri), and

do not exist on the third type (Belgun). For b2 > 0, all Kodaira class VII

surfaces are conjectured to admit a spherical shell (Ma. Kato, I. Nakamura).

The known examples minimal Kodaira class VII surfaces are either hyperbolic

or parabolic Inoue surfaces. LCK structures on hyperbolic Inoue surfacse were

recently constructed by A. Fujiki and M. Pontecorvo (2009).

CONJECTURE: (L. Ornea) Let M be a compact surface of class VII

admitting a spherical shell. Is it LCK?
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LCS manifolds

DEFINITION: A locally conformally symplectic (LCS) manifold is a

smooth manifold, with a non-degenerate 2-form ω satisfying dω = ω ∧ η,
where η is a closed 1-form, called the Lee form of (M,ω).

REMARK: LCK manifolds are obviously LCS.

REMARK: Just like with symplectic and Kähler structures, existence of an

LCS structure gives obvious topological constrains on an LCK mani-

fold.

REMARK: Just like with symplectic and Kähler structures, these constrains

are quite weak. There are many symplectic manifolds not admitting any

Kähler structure. An LCS structure exists on many nilmanifolds and solv-

manifolds, some of which (apparently) do not admit an LCK structure.
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Examples LCS manifolds which are not LCK

REMARK: F. Belgun (2000) has proved that an Inoue surface of class
S+
n;p,q,u, where u ∈ C\R cannot admit an LCK metric.

REMARK: F. Tricerri (1982) has constructed an LCK metric on other
Inoue surfaces, which are diffeomorphic to Belgun’s S+

n;p,q,u.

CLAIM: An Inoue surface of class S+ is always admits an LCS structure.

REMARK: This is clear, because the Belgun’s S+
n;p,q,u is diffeomorphic to

Tricerri’s Inoue surface.

DEFINITION: A nilmanifold is a quotient of a nilpotent Lie group G by a
discrete, cocompact subgroup Γ ⊂ G

CONJECTURE: If a nilmanifold admits an LCK structure then it is a
Heisenberg group manifold (quotient of a Heisenberg group by a cocompact
lattice).

REMARK: This is known for homogeneous LCK structures (H. Sawai,
2007).
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Morse-Novikov class of an LCK manifold

DEFINITION: Let (M,ω, θ) be an LCK manifold, and

dθ := d− θ : Λi(M)−→ Λi+1(M)

the “Morse-Novikov” differential on differential forms. Its cohomology Hi
θ(M)

are called the Morse-Novikov cohomology of M .

DEFINITION: Let (M,ω, θ) be an LCK manifold, and L a trivial line bundle,
with flat connection defined as ∇ := ∇0+θ, where ∇0 is the trivial connection.
Then L is called the weight bundle of M .

REMARK: The cohomology of the local system (L,∇) is naturally iden-
tified with Hi

θ(M).

DEFINITION: Clearly, dθω = 0. Its cohomology class [ω] ∈ H2
θ (M) is called

the Morse-Novikov class of M .

REMARK: The Morse-Novikov class is a natural analogue of a Kähler class,
and should be studied if we want to understand the topology.
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Vaisman manifolds

DEFINITION: An LCK manifold (M,ω, θ) is called Vaisman if ∇LCθ = 0,
where ∇LC is the Levi-Civita connection.

THEOREM: (Kamishima-Ornea, 2001) If M is compact, this is equivalent
to M admitting a conformal holomorphic flow, acting non-isometrically
on its Kähler covering.

THEOREM: (Ornea-V., 2006) A compact complex manifold admits Vais-
man metric if and only if M admits a holomorphic embedding into a
diagonal Hopf manifold.

DEFINITION: A conical Kähler manifold is a Kähler manifold (C,ω)
equipped with a free, proper holomorpic flow ρ : R × C −→ C, with ρ act-
ing by homotheties as follows: ρ(t)∗ω = etω.

THEOREM: (Ornea-V., 2003) A compact Vaisman manifold is conformally
equivalent to a quotient of a conical Kähler manifold by Z freely acting
on (C,ω) by non-isometric homotheties.
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Sasakian manifolds

DEFINITION: A Sasakian manifold is the space of orbits of ρ on a conical

Kähler manifold (C,ω, ρ).

STRUCTURE THEOREM: (Ornea-V., 2003) Any compact Vaisman man-

ifold M admits a smooth Riemannian submersion σ : M −→ S1, with

Sasakian fibers. The weight bundle L is obtained as a pullback from S1:

L = σ∗(L0).

THEOREM: For a Vaisman manifold, Hi
θ(M) = 0.

PROOF: Immediately follows from the Structure Theorem. Let S be the

Sasakian fibers of σ. By the Künneth formula,

H∗θ(M) = H∗(M,L) ∼= H∗(S)⊗H∗(S1, L0),

and H∗(S1, L0) = 0.

8



topology of LCK manifolds M. Verbitsky

Kähler potential

DEFINITION: Let (M, I, ω) be a Kähler manifold. Denote by dc the dif-

ferential dc := −IdI. A Kähler potential is a function satisfying ddcψ = ω.

Locally, a Kähler potential always exists, and it is unique up to adding real

parts of holomorphic functions.

OBSERVATION: Let (M,ω, θ) be a Vaisman manifold, and

(M̃, ω̃)
π−→ M be its Kähler covering, with Γ ∼= Z the deck transform group:

M = M̃/Γ. Then π∗θ is exact on M̃ : π∗θ = dν. Moreover, the function

ψ := e−ν is a Kähler potential: ddcψ = ω̃.

OBSERVATION: Let γ ∈ Γ be any element. Since Γ preserves θ, we have

γ∗ν = ν + cγ, where cγ is a constant. Then γ∗ψ = e−cγψ (automorphic

property).
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Automorpic potential

DEFINITION: Let (M,ω, θ) be an LCK manifold, (M̃, ω̃) its Kähler covering,

Γ the deck transform group, M = M̃/Γ. and ψ ∈ C∞M̃ a Kähler potential,

ψ > 0. Assume that for any γ ∈ Γ, γ∗ψ = cγψ, for some constant cγ. Then ψ

is called an automorphic potential of M .

DEFINITION: Let (M,ω, θ) be an LCK manifold, and L its weight bundle.

Since L is a local system, its holonomy defines a map χ : π1(M)−→ R>0. Its

image Γ is called the monodromy group of M .

REMARK: Let Γ be the smallest quotient of π1(M) such that the corre-

sponding covering M̃ admits a Kähler metric in the same conformal class as

the pullback of ω. Such a metric M̃ is unique up to constant. We call (M̃, ω̃)

the Kähler covering of M .

PROPOSITION: (Ornea-V., 2007) Let (M,ω, θ) be an LCK manifold with

an automorphic potential. Then there exists another LCK metric on M

with automorphic potential and monodromy Z.
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Stein manifolds

DEFINITION: A complex variety M is called holomorphically convex if
for any infinite discrete subset S ⊂ M , there exists a holomorphic function
f ∈ OM which is unbounded on S.

DEFINITION: A complex variety is called Stein if it is holomorphically con-
vex and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed
holomorphic embedding into Cn.

THEOREM: (K. Oka, 1942) A complex manifold M is Stein if and only
M admits a Kähler metric with a Kähler potential which is positive and
proper (proper = preimages of compact sets are compact).

THEOREM: (Rossi 1965, Andreotti-Siu 1970) Let M be a complex manifold
with a boundary, dimCM > 2, and ϕ a proper Kähler potential on M , taking
values in [c,∞[, and equal to c in the boundary of M . Then there exists a
Stein variety Mc with isolated singularities, containing M , and it is unique.
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Manifolds with LCK potential

DEFINITION: Let (M,ω, θ) be an LCK manifold with automorphic potential
ψ. Assume that its monodromy is Z. Then ψ is called an LCK potential.

THEOREM: Let (M,ω, θ) be an LCK manifold with LCK potential, dimCM >
2, and M̃ is its Kähler covering. Then M̃ can be compactified by adding
a single point to its origin, and the resulting variety is Stein. Moreover,
the monodromy Γ acts on M̃ by holomorphic automorphisms.

PROOF: Follows from Rossi-Andreotti-Siu theorem (we glue in the hole left
by excising the set of points where ψ 6 c).

COROLLARY: An LCK manifold with LCK potential admits a holo-
morphic embedding into a Hopf manifold.

PROOF: A holomorphic embedding into a Hopf manifold is the same as an
automorphic embedding into Cn. Using the Stein property, we find a suitable
space V ⊂ OM̃ preserved by Γ. This gives a map M̃/Γ−→ (V \0)/Γ.

REMARK: Converse is also true: any complex subvariety of a Hopf man-
ifold admits an LCK potential.
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Kodaira-type stability of LCK potential

THEOREM: Let (M, I) be a complex manifold admitting an LCK metric with

LCK potential. Then any small deformation of the complex structure I

also admits an LCK metric with LCK potential.

PROOF: Let I1 be a small deformation of I, M̃ the Kähler covering of

M , and ψ ∈ C∞M̃ its potential. Then ddcψ = −dI1dψ on (M̃, I1) is a small

deformation of ddcψ = −dIdψ. For I1 close to I, the eigenvalues of −dI1dψ
are close to the eigenvalues of −dIdψ, hence positive. Therefore, ψ is an

LCK potential on (M, I1).

REMARK: Deformations of Vaisman manifolds can be non-Vaisman. De-

formations of LCK can be non-LCK (F. Belgun, 2000).

REMARK: It is easy to distinguish Vaisman manifolds from other LCK with

potential. Vaisman manifolds are embeddable into diagonal Hopf manifolds,

and ones which are non-Vaisman are embeddable into Hopf manifolds which

are not diagonal.
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Deformations of LCK manifolds with potential

THEOREM: Let (M,ω, θ) be an LCK manifold with potential. Then a small

deformation of M admits a Vaisman metric.

PROOF: Step 1. Let V = Cn, A ∈ End(V ) an invertible linear operator

with all eigenvalues |αi| < 1, and H = (V \0)/〈A〉 the corresponding Hopf

manifold. The complex submanifolds of H are identified with complex

subvarieties Z ⊂ V , smooth outside of 0 and fixed by A.

Step 2. We are going to prove that Z is fixed by the group GA := et logA,

t ∈ R, acting on V . An ideal IZ ⊂ OV is finitely generated, because OV is

coherent. Let ÎZ be the corresponding ideal in the completion of OV in 0.

To prove that IZ is fixed by GA, it suffices to show that ÎZ is fixed by GA.

However,

ÎZ = lim← IZ/
(
IZ ∩mk

)
where m is the maximal ideal of 0.
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Deformations of Vaisman manifolds (part 2)

To prove that ÎZ is fixed by GA it remains to show only that IZ/IZ ∩ mk is

fixed by GA. However, IZ/IZ ∩mk is a plane in a finite-dimensional space

OV /mk = C⊕ V ⊕ Sym2 V ⊕ ...⊕ Symk−1 V

and such a plane, if fixed by A, is automatically fixed by GA.

Step 3. For any linear operator, there is a unique decomposition A := SU

onto a product of commuting operators, with S semisimple (diagonal), and

U unipotent (this is called the Jordan-Chevalley decomposition). For any

finite-dimensional representation of GL(n), any vector which is fixed by A, is

also fixed by S. By the argument in Step 2, this proves that S fixes the ideal

ÎZ, and the subvariety Z ⊂ V .

Step 4. The diagonal Hopf variety HS := (V \0)/〈S〉 contains a Vaisman

submanifold M1 := (Z\0)/〈S〉. Since S is contained in a closure of a GL(V )-

orbit of A, we have shown also that M1 can be obtained as an arbitrary

small deformation of M.
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Topology of Vaisman manifolds

OBSERVATION: Any Vaisman manifold is diffeomorphic to a fiber bundle
over a circle, with fiber a Sasakian manifold.

OBSERVATION: Any Sasakian manifold is diffeomorphic to a unit circle
bundle in a positive line bundle over a compact projective orbifold.

REMARK: This result allows one to obtain information about topology of
Vaisman manifolds and LCK manifolds with automorphic potential directly
from results about Sasakian manifolds and projective orbifolds.

CONJECTURE: (“dθd
c
θ-lemma for LCK manifolds”) An automorphic po-

tential exists for any LCK manfold with vanishing Morse-Novikov class.

REMARK: From this conjecture we immediately obtain many topological
results about LCK manifolds. In particular, it follows immediately that any
nilmanifold with vanishing Morse-Novikov class is diffeomorphic to a Heisen-
berg group nilmanifold (the argument is essentially the same as the proof of
Sawai’s theorem)
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Harmonic maps in LCK geometry

DEFINITION: Let (M,ω, θ) be an LCK manifold. Then M is called pluri-
canonical if (∇LCθ)1,1 = 0, where ()1,1 denotes the I-invariant part of the
tensor.

THEOREM: (Kokarev-Kotschick, 2008) Let M be a compact pluricanonical
LCK manifold, such that π1(M) admits a surjective homomorphism to a non-
abelian free group. Then M admits a surjective holomorphic map with
connected fibers to a compact Riemannian surface.

REMARK: For a compact Kähler manifold, this result is known (Siu, Beauville).

REMARK: This theorem is proven by the same harmonic maps argument
as in Kähler case. One takes a continuous map from M into a negatively
curved Kähler manifold X (e.g. a complex curve), and shows existence of
a harmonic map from M to X in the same homotopy class. A local
argument is used to show that harmonic implies holomorphic.

Using this approach, many constrains on topology of pluricanonical LCK man-
ifolds were obtained.
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Kokarev’s pluricanonical manifolds

DEFINITION: Let (M,ω, θ) be an LCK manifold, M̃ its Kähler covering, and
∇̃ its Levi-Civita connection. Then ∇̃ is lifted from a connection ∇W on M ,
called the Weyl connection of M .

OBSERVATION: The Weyl connection can be expressed through the Levi-
Civita connection on M . This gives ∇(θ) − ∇W (θ) = θ ∧ θ − g. Then, the
pluricanonical LCK condition (∇θ)1,1 = 0 is translated into

∇W (θ)1,1 = g − (θ ⊗ θ)1,1.
Since ∇W is torsion-free, this is equivalent to dθc = ω−θ∧θc, where θc := I(θ).

CLAIM: The condition dθc = ω − θ ∧ θc is equivalent to the existence of
an automorphic potential.

PROOF: Let ψ := e−ν, where dν = θ. Then

ddcψ = −e−νddcν + e−νdν ∧ dcν = e−ν(dcθ+ θ ∧ θc) = ψω

hence pluricanonical condition implies that ψ is an automorpic potential.
The converse is true by the same argument.
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Harmonic map theory for LCK manifold with potential

From the above argument, a corollary is obtained

COROLLARY: Any pluricanonical LCK manifold is diffeomorphic to a

Vaisman manifold.

This allows one to use results on topology of Sasakian manifolds to rediscover

results of Kokarev and Kottschik.

The main question (which inspired Kokarev and Kottschik) remains just as

hard to solve.

QUESTION: (Vaisman) Is there any compact LCK manifold homotopy

equivalent to a compact Kähler manifold?
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