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Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomorphisms
I, J, K : TM −→ TM , satisfying the quaternionic relation I2 = J2 = K2 =
IJK = − Id . Suppose that I, J, K are integrable almost complex structures.
Then (M, I, J, K) is called a hypercomplex manifold.

Compact hypercomplex manifolds (examples)

0. Hyperkähler manifolds.

1. In dimension 1 (real dimension 4), we have a complete classification,
due to C. P. Boyer (1988)

2. Many homogeneous examples, due to D. Joyce and physicists Ph.
Spindel, A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).

3. Some nilmanifolds admit homogeneous hypercomplex structure (M. L.
Barberis, I. Dotti, A. Fino) (1990-ies).

4. Some inhomogeneous examples are constructed by deformation (G.
Grantcharov, H. Pedersen, Y.-S. Poon) or as fiber bundles (V.).
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OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

Theorem: (M. Obata, 1955) Let (M, I, J, K) be a hypercomplex manifold.

Then M admits a unique torsion-free affine connection preserving I, J, K.

Converse is also true. Suppose that I, J, K are operators defining quater-

nionic structure on TM , and ∇ a torsion-free, affine connection preserving I,

J, K. Then I, J, K are integrable almost complex structures, and (M, I, J, K)

is hypercomplex.

Holonomy of Obata connection lies in GL(n, H). A manifold equipped with

an affine, torsion-free connection with holonomy in GL(n, H) is hypercomplex.

This can be used as a definition of a hypercomplex structure.
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Geometry of hypercomplex manifolds

QUESTIONS

1. Given a complex manifold M , when M admits a hypercomplex struc-
ture? How many?

2. What are the possible holonomies of Obata connection, for a com-
pact hypercomplex manifold? What are the special properties of reducible
holonomies in this case? Irreducicble holonomies are GL(n, H), SL(n, H) and
Sp(n) only (Merkulov, Schwachhöfer).

3. Describe the structure of automorphism group of a hypercomplex
manifold.

Partial answer to Question 1 is known.

THEOREM: Let (M, I, J, K) be a compact hypercomplex manifold. Assume
that the complex manifold (M, I) admits a Kähler structure. Then (M, I) is
hyperkähler (V., 2004).
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Quaternionic Hermitian structures

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold, and g a Rieman-

nian metric. We say that g is quaternionic Hermitian if I, J, K are orthogonal

with respect to g.

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Hermitian

forms

ωI(·, ·) = g(·, I·), ωJ = g(·, J ·), ωK = g(·, K·)

(real, but not closed). Then Ω = ωJ +
√
−1 ωK is of Hodge type (2,0) with

respect to I.

If dΩ = 0, (M, I, J, K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

∂Ω = 0, ∂ : Λ2,0(M, I)−→ Λ3,0(M, I)
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DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian met-

ric, and Ω = ωJ +
√
−1 ωK the corresponding (2,0)-form. We say that g is

HKT (“weakly hyperkähler with torsion”) if ∂Ω = 0.

HKT-metrics play in hypercomplex geometry the same role as Kähler

metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of an

“HKT-class” (similar to Kähler class) in a certain finite-dimensional coholol-

ogy group. Two metrics in the same HKT-class differ by a potential, which

is a function.

2. When (M, I) has trivial canonical bundle, a version of Hodge theory is

established, giving an sl(2)-action on cohomology.
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Canonical bundle of a hypercomplex manifold.

0. Quaternionic Hermitian structure always exists.

1. Complex dimension is even.

2. The canonical line bundle Λn,0(M, I) of (M, I) is always trivial topolog-

ically. Indeed, a non-degenerate section of canonical line bundle is provided by

top power of a form Ω associated with some quaternionic Hermitian strucure.

In particular, c1(M, I) = 0.

3. Canonical bundle is non-trivial holomorphically in many cases. However,

Λn,0(M, I) is trivial and holonomy of Obata connection lies in SL(n, H) when

M is a nilmanifold (Barberis-Dotti-V., 2007)

4. If Hol(M) lies in SL(n, H), canonical bundle is trivial. The converse is

true when M is compact and HKT (V., 2004): an HKT manifold with

holomorphically trivial canonical bunlde has Hol(M) ⊂ SL(n, H).
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SU(2)-action on Λ∗(M)

The group SU(2) of unitary quaternions acts on TM , because quaternion

algebra acts. By multilinearity, this action is extended to Λ∗(M).

1. The Hodge decomposition Λ∗(M) =
⊕

Λp,q(M) is recovered from this

SU(2)-action. “Hypercomplex analogue of the Hodge decomposition”.

2. 〈ωI , ωJ , ωK〉 is an irreducible 3-dimensional representation of SU(2), for

any quaternionic Hermitian structure (“representation of weight 2”).

WEIGHT of a representation.

We say that an irreducible SU(2)-representation W has weight i if dimW =

i + 1. A representation is said to be pure of weight i if all its irreducible

components have weight i. If all irreducible components of a representation

W1 have weight 6 i, we say that W1 is a representation of weight 6 i. In

a similar fashion one defines representations of weight > i.
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Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of

representations of weights 6 i and 6 j has weight 6 i + j.

Clearly, Λ1(M) has weight 1. Therefore, Λi(M) has weight 6 i.

Let V i ⊂ Λi(M) be the maximal SU(2)-invariant subspace of weight < i.

By multiplicativity, V ∗ =
⊕

i V i is an ideal in Λ∗(M). We also have V i =

Λi(M) for i > 2n. Also, dV i ⊂ V i+1, hence V ∗ ⊂ Λ∗(M) is a differential ideal

in (Λi(M), d).

Denote by (Λ∗+(M), d+) the quotient algebra Λ∗(M)/V ∗.
We call it the quaternionic Dolbeault algebra (qD-algebra) of M .

A similar construction was given by Salamon in a more general situation.
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The Hodge decomposition of quaternionic Dolbeault algebra.

The Hodge decomposition is induced from the SU(2)-action, hence it is

compatible with weights: Λi
+(M) =

⊕
p+q=i Λ

p,q
+,I(M).

Let
√
−1 I be an element of the Lie algebra su(2)⊗ C acting as

√
−1 (p− q)

on Λp,q(M). This vector generates the Cartan algebra of su(2). The su(2)-

action induces an isomorphism of Λp,q
+,I(M) for all {p, q | p + q = k, p, q > 0}.

This gives

Theorem: Λp,q
+,I(M) ∼= Λ0,p+q(M, I).

This isomorphism is provided by the su(2)⊗ C-action.
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Differentials in the qD-complex

We extend J : Λ1(M)−→ Λ1(M) to Λ∗(M) by multiplicativity. Since I and J

anticommute on Λ1(M), we have J(Λp,q(M, I)) = Λq,p(M, I).

Denote by ∂J : Λp,0(M, I)−→ Λp,0(M, I) the operator J ◦ ∂ ◦ J, where
∂ : Λ0,p(M, I)−→ Λ0,p(M, I) is the standard Dolbeault differential. Then ∂,
∂J anticommute. Moreover, there exists a multiplicative isomorphism of
bicomplexes.
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Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the correspond-

ing (2,0)-form: ωI(x, y) = 1
2Ω(x, J(y)), where x, y ∈ T1,0(M). The HKT-

structures uniquely correspond to (2,0)-forms which are

1. Real: J(Ω) = Ω

2. Closed: ∂Ω = 0.

2. Positive: Ω(x, J(x)) > 0, for any non-zero x ∈ T1,0(M)

Locally, any HKT-metric is given by a potential: Ω = ∂∂Jϕ where ϕ is a

smooth function.

Any convex, and any strictly plurisubharmonic function is a potential

of some HKT-structure. Therefore, HKT-structures locally always exist

(Grantcharov, Poon).
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HKT-manifolds with holonomy in SL(n, H)

Let M be a compact HKT-manifold with holonomy in SL(n, H), and ∆∂ :=

∂∂
∗
+ ∂

∗
∂ be the antiholomorphic Laplacian with

ker∆∂

∣∣∣∣
Λ0,∗(M)

= H∗(M,O(M,I)).

Theorem: ∆∂ commutes with the multiplication by the HKT-form Ω, and

with the operator η −→ J(η). In particular, there is a Lefschetz-like sl(2)-

action on H∗(M,O(M,I)).

Theorem (“∂∂J-lemma”) Let Ω,Ω′ be HKT-forms on a compact HKT-

manifold with holonomy in SL(n, H). Assume that the cohomology classes

of Ω,Ω′ in H∗(M,O(M,I)) are equal. Then Ω −Ω′ = ∂∂Jϕ for some smooth

function ϕ on M .

Example: Any hypercomplex nilmanifold has holonomy in SL(n, H) (Barberis,

Dotti, V.).
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Quaternionic Monge-Ampere equation

Let M be an HKT-manifold with holonomy in SL(n, H). (this is equivalent to

having trivial canonical bundle). Then the canonical bundle is trivialized by a

form ΦI ∈ Λ2n,0, non-degenerate, closed and satisfying J(ΦI) = ΦI.

Quaternionic Monge-Ampere equation:

(Ω + ∂∂Jϕ)n = AfefΦI (∗)

where Ω + ∂∂Jϕ is an HKT-form. Here ϕ is unknown, and Af is a number

determined from ∫
M

Ωn ∧ΦI = Af

∫
M

efΦI ∧ΦI

Theorem: (Alesker, V., 2008) The solution ϕ of (*) is unique, if exists.

Moreover, any solution of (*) admits a C0-estimation in terms of f,ΦI ,Ω.

Conjecture: (“hypercomplex Calabi-Yau”)

The equation (*) has a solution for all f,ΦI ,Ω.
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Uniqueness of solutions of Monge-Ampere equations

Suppose Ω1,Ω2 are HKT-forms which are solutions of M-A, Ω1−Ω2 = ∂∂Jϕ.

Then Ωn
1 −Ωn

2 = 0. This gives

0 = Ωn
1 −Ωn

2 = ∂∂Jϕ ∧
n−1∑
i=0

Ωi
1 ∧Ωn−1−i

2 .

Denote by P the form
∑n−1

i=0 Ωi
1∧Ωn−1−i

2 and consider the differential operator

D : C∞(M)−→ C∞(M)

ϕ−→
∂∂Jϕ ∧ P

Ωn
.

Then D is a second order operator with positive symbol.

Solutions of D(f) = 0 cannot have local maxima (“generalized maximum

principle”). Since M is compact, all solutions of D(f) = 0 are constant.
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Calabi-Yau HKT manifolds

Definition: Let (M, I, J, K,Ω) be an HKT-manifold with holonomy in SL(n, H),
and ΦI ∈ Λn,0

I (M) the parallel section of the canonical class. We say that M

is a Calabi-Yau HKT manifold if Ωn = ΦI.

Example: Let G be a nilpotent Lie group with a left-invariant hypercomplex
HKT-structure. Then Hol(G) ⊂ SL(n, H) (Barberis, Dotti, V.). Since the
forms ΦI and Ω are G-invariant, the quotient Ωn

ΦI
is constant. Rescaling, we

obtain that all HKT-nilmanifolds are Calabi-Yau HKT .

Claim: Let (M, I, J, K, g) be a Calabi-Yau HKT-manifold. Then (M, J, g) is
balanced, that is, d(ω2n−1

J ) = 0.

Proof: ω2n−1
J = Re(Ωn−1 ∧Ωn). However,

d(Ωn−1 ∧Ωn)
Hodge decomposition

============== ∂(Ωn−1 ∧Ωn)

=(n− 1)∂Ω ∧Ωn−2 ∧Ωn + Ωn−1 ∧ ∂(Ωn)

The first term vanishes because Ω is HKT, the second because Ωn is closed.
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