$SL(\mathbb{H},n)$ -manifolds

Hypercomplex manifolds with holonomy $SL(n, \mathbb{H})$

Misha Verbitsky

Workshop "Special Geometries in Mathematical Physics",

April 3, 2008, Kühlungsborn

Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomorphisms $I, J, K : TM \longrightarrow TM$, satisfying the quaternionic relation $I^2 = J^2 = K^2 = IJK = -\operatorname{Id}$. Suppose that I, J, K are integrable almost complex structures. Then (M, I, J, K) is called a hypercomplex manifold.

Compact hypercomplex manifolds (examples)

- 0. Hyperkähler manifolds.
- 1. In dimension 1 (real dimension 4), we have a complete classification, due to C. P. Boyer (1988)
- 2. Many homogeneous examples, due to D. Joyce and physicists Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).
- 3. **Some nilmanifolds** admit homogeneous hypercomplex structure (M. L. Barberis, I. Dotti, A. Fino) (1990-ies).
- 4. Some inhomogeneous examples are constructed by deformation (G. Grantcharov, H. Pedersen, Y.-S. Poon) or as fiber bundles (V.).

OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

Theorem: (M. Obata, 1955) Let (M, I, J, K) be a hypercomplex manifold. Then M admits a unique torsion-free affine connection preserving I, J, K.

Converse is also true. Suppose that I, J, K are operators defining quaternionic structure on TM, and ∇ a torsion-free, affine connection preserving I, J, K. Then I, J, K are integrable almost complex structures, and (M, I, J, K) is hypercomplex.

Holonomy of Obata connection lies in $GL(n, \mathbb{H})$ **.** A manifold equipped with an affine, torsion-free connection with holonomy in $GL(n, \mathbb{H})$ is hypercomplex.

This can be used as a definition of a hypercomplex structure.

Geometry of hypercomplex manifolds

QUESTIONS

- 1. Given a complex manifold M, when M admits a hypercomplex structure? How many?
- 2. What are the possible holonomies of Obata connection, for a compact hypercomplex manifold? What are the special properties of reducible holonomies in this case? Irreducible holonomies are $GL(n, \mathbb{H})$, $SL(n, \mathbb{H})$ and Sp(n) only (Merkulov, Schwachhöfer).
- 3. **Describe the structure of automorphism group** of a hypercomplex manifold.

Partial answer to Question 1 is known.

THEOREM: Let (M, I, J, K) be a compact hypercomplex manifold. Assume that the complex manifold (M, I) admits a Kähler structure. Then (M, I) is hyperkähler (V., 2004).

Quaternionic Hermitian structures

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold, and g a Riemannian metric. We say that g is **quaternionic Hermitian** if I, J, K are orthogonal with respect to g.

Given a quaternionic Hermitian metric g on (M,I,J,K), consider its Hermitian forms

$$\omega_I(\cdot,\cdot) = g(\cdot,I\cdot), \quad \omega_J = g(\cdot,J\cdot), \quad \omega_K = g(\cdot,K\cdot)$$

(real, but *not closed*). Then $\Omega = \omega_J + \sqrt{-1} \, \omega_K$ is of Hodge type (2,0) with respect to I.

If $d\Omega = 0$, (M, I, J, K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

$$\partial\Omega=0,\quad \partial:\ \Lambda^{2,0}(M,I)\longrightarrow \Lambda^{3,0}(M,I)$$

DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian metric, and $\Omega = \omega_J + \sqrt{-1} \, \omega_K$ the corresponding (2,0)-form. We say that g is HKT ("weakly hyperkähler with torsion") if $\partial \Omega = 0$.

HKT-metrics play in hypercomplex geometry the same role as Kähler metrics play in complex geometry.

- 1. They admit a smooth potential (locally). There is a notion of an "HKT-class" (similar to Kähler class) in a certain finite-dimensional coholology group. Two metrics in the same HKT-class differ by a potential, which is a function.
- 2. When (M, I) has trivial canonical bundle, a version of Hodge theory is established, giving an $\mathfrak{sl}(2)$ -action on cohomology.

Canonical bundle of a hypercomplex manifold.

- 0. Quaternionic Hermitian structure always exists.
- 1. Complex dimension is even.
- 2. The canonical line bundle $\Lambda^{n,0}(M,I)$ of (M,I) is always trivial topologically. Indeed, a non-degenerate section of canonical line bundle is provided by top power of a form Ω associated with some quaternionic Hermitian strucure. In particular, $c_1(M,I)=0$.
- 3. Canonical bundle is non-trivial holomorphically in many cases. However, $\Lambda^{n,0}(M,I)$ is trivial and holonomy of Obata connection lies in $SL(n,\mathbb{H})$ when M is a nilmanifold (Barberis-Dotti-V., 2007)
- 4. If $\mathcal{H}ol(M)$ lies in $SL(n,\mathbb{H})$, canonical bundle is trivial. The converse is true when M is compact and HKT (V., 2004): an HKT manifold with holomorphically trivial canonical bundle has $\mathcal{H}ol(M) \subset SL(n,\mathbb{H})$.

SU(2)-action on $\Lambda^*(M)$

The group SU(2) of unitary quaternions acts on TM, because quaternion algebra acts. By multilinearity, this action is extended to $\Lambda^*(M)$.

- 1. The Hodge decomposition $\Lambda^*(M) = \bigoplus \Lambda^{p,q}(M)$ is recovered from this SU(2)-action. "Hypercomplex analogue of the Hodge decomposition".
- 2. $\langle \omega_I, \omega_J, \omega_K \rangle$ is an irreducible 3-dimensional representation of SU(2), for any quaternionic Hermitian structure ("representation of weight 2").

WEIGHT of a representation.

We say that an irreducible SU(2)-representation W has weight i if dim W=i+1. A representation is said to be **pure of weight** i if all its irreducible components have weight i. If all irreducible components of a representation W_1 have weight $\leqslant i$, we say that W_1 is a representation of weight $\leqslant i$. In a similar fashion one defines representations of weight $\geqslant i$.

Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of representations of weights $\leq i$ and $\leq j$ has weight $\leq i + j$.

Clearly, $\Lambda^1(M)$ has weight 1. Therefore, $\Lambda^i(M)$ has weight $\leq i$.

Let $V^i \subset \Lambda^i(M)$ be the maximal SU(2)-invariant subspace of weight < i.

By multiplicativity, $V^* = \bigoplus_i V^i$ is an ideal in $\Lambda^*(M)$. We also have $V^i = \Lambda^i(M)$ for i > 2n. Also, $dV^i \subset V^{i+1}$, hence $V^* \subset \Lambda^*(M)$ is a differential ideal in $(\Lambda^i(M), d)$.

Denote by $(\Lambda_+^*(M), d_+)$ the quotient algebra $\Lambda^*(M)/V^*$. We call it the quaternionic Dolbeault algebra (qD-algebra) of M.

A similar construction was given by Salamon in a more general situation.

 $SL(\mathbb{H}, n)$ -manifolds

The Hodge decomposition of quaternionic Dolbeault algebra.

The Hodge decomposition is induced from the SU(2)-action, hence it is compatible with weights: $\Lambda^i_+(M) = \bigoplus_{p+q=i} \Lambda^{p,q}_{+,I}(M)$.

Let $\sqrt{-1}\,\mathcal{I}$ be an element of the Lie algebra $\mathfrak{su}(2)\otimes\mathbb{C}$ acting as $\sqrt{-1}\,(p-q)$ on $\Lambda^{p,q}(M)$. This vector generates the Cartan algebra of $\mathfrak{su}(2)$. The $\mathfrak{su}(2)$ -action induces an isomorphism of $\Lambda^{p,q}_{+,I}(M)$ for all $\{p,q\mid p+q=k,\ p,q\geqslant 0\}$. This gives

Theorem:
$$\Lambda_{+,I}^{p,q}(M) \cong \Lambda^{0,p+q}(M,I).$$

This isomorphism is provided by the $\mathfrak{su}(2) \otimes \mathbb{C}$ -action.

Differentials in the qD-complex

We extend $J: \Lambda^1(M) \longrightarrow \Lambda^1(M)$ to $\Lambda^*(M)$ by multiplicativity. Since I and J anticommute on $\Lambda^1(M)$, we have $J(\Lambda^{p,q}(M,I)) = \Lambda^{q,p}(M,I)$.

Denote by $\partial_J: \Lambda^{p,0}(M,I) \longrightarrow \Lambda^{p,0}(M,I)$ the operator $J \circ \overline{\partial} \circ J$, where $\overline{\partial}: \Lambda^{0,p}(M,I) \longrightarrow \Lambda^{0,p}(M,I)$ is the standard Dolbeault differential. Then ∂ , ∂_J anticommute. Moreover, there exists a multiplicative isomorphism of bicomplexes.

Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the corresponding (2,0)-form: $\omega_I(x,\overline{y})=\frac{1}{2}\Omega(x,J(\overline{y}))$, where $x,y\in T^{1,0}(M)$. The HKT-structures uniquely correspond to (2,0)-forms which are

- 1. Real: $J(\Omega) = \overline{\Omega}$
- 2. Closed: $\partial \Omega = 0$.
- 2. Positive: $\Omega(x,J(\overline{x})) > 0$, for any non-zero $x \in T^{1,0}(M)$

Locally, any HKT-metric is given by a potential: $\Omega = \partial \partial_J \varphi$ where φ is a smooth function.

Any convex, and any strictly plurisubharmonic function is a potential of some HKT-structure. Therefore, HKT-structures locally always exist (Grantcharov, Poon).

HKT-manifolds with holonomy in $SL(n, \mathbb{H})$

Let M be a compact HKT-manifold with holonomy in $SL(n,\mathbb{H})$, and $\Delta_{\overline{\partial}} := \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial}$ be the antiholomorphic Laplacian with

$$\ker \Delta_{\overline{\partial}}\Big|_{\Lambda^{0,*}(M)} = H^*(M, \mathcal{O}_{(M,I)}).$$

Theorem: $\Delta_{\overline{\partial}}$ commutes with the multiplication by the HKT-form $\overline{\Omega}$, and with the operator $\eta \longrightarrow J(\overline{\eta})$. In particular, there is a Lefschetz-like $\mathfrak{sl}(2)$ -action on $H^*(M, \mathcal{O}_{(M,I)})$.

Theorem (" $\partial \partial_J$ -lemma") Let Ω,Ω' be HKT-forms on a compact HKT-manifold with holonomy in $SL(n,\mathbb{H})$. Assume that the cohomology classes of $\overline{\Omega},\overline{\Omega}'$ in $H^*(M,\mathcal{O}_{(M,I)})$ are equal. Then $\Omega-\Omega'=\partial \partial_J \varphi$ for some smooth function φ on M.

Example: Any hypercomplex nilmanifold has holonomy in $SL(n, \mathbb{H})$ (Barberis, Dotti, V.).

Quaternionic Monge-Ampere equation

Let M be an HKT-manifold with holonomy in $SL(n, \mathbb{H})$. (this is equivalent to having trivial canonical bundle). Then the canonical bundle is trivialized by a form $\Phi_I \in \Lambda^{2n,0}$, non-degenerate, closed and satisfying $J(\Phi_I) = \overline{\Phi}_I$.

Quaternionic Monge-Ampere equation:

$$(\Omega + \partial \partial_J \varphi)^n = A_f e^f \Phi_I \quad (*)$$

where $\Omega + \partial \partial_J \varphi$ is an HKT-form. Here φ is unknown, and A_f is a number determined from

$$\int_{M} \Omega^{n} \wedge \overline{\Phi}_{I} = A_{f} \int_{M} e^{f} \Phi_{I} \wedge \overline{\Phi}_{I}$$

Theorem: (Alesker, V., 2008) The solution φ of (*) is unique, if exists. Moreover, any solution of (*) admits a C^0 -estimation in terms of f, Φ_I, Ω .

Conjecture: ("hypercomplex Calabi-Yau")

The equation (*) has a solution for all f, Φ_I, Ω .

 $SL(\mathbb{H},n)$ -manifolds

Uniqueness of solutions of Monge-Ampere equations

Suppose Ω_1, Ω_2 are HKT-forms which are solutions of M-A, $\Omega_1 - \Omega_2 = \partial \partial_J \varphi$. Then $\Omega_1^n - \Omega_2^n = 0$. This gives

$$0 = \Omega_1^n - \Omega_2^n = \partial \partial_J \varphi \wedge \sum_{i=0}^{n-1} \Omega_1^i \wedge \Omega_2^{n-1-i}.$$

Denote by P the form $\sum_{i=0}^{n-1} \Omega_1^i \wedge \Omega_2^{n-1-i}$ and consider the differential operator $D: C^{\infty}(M) \longrightarrow C^{\infty}(M)$

$$\varphi \longrightarrow \frac{\partial \partial_J \varphi \wedge P}{\Omega^n}.$$

Then D is a second order operator with positive symbol.

Solutions of D(f) = 0 cannot have local maxima ("generalized maximum principle"). Since M is compact, all solutions of D(f) = 0 are constant.

Calabi-Yau HKT manifolds

Definition: Let (M, I, J, K, Ω) be an HKT-manifold with holonomy in $SL(n, \mathbb{H})$, and $\Phi_I \in \Lambda_I^{n,0}(M)$ the parallel section of the canonical class. We say that M is a Calabi-Yau HKT manifold if $\Omega^n = \Phi_I$.

Example: Let G be a nilpotent Lie group with a left-invariant hypercomplex HKT-structure. Then $\mathcal{H}\text{ol}(G) \subset SL(n,\mathbb{H})$ (Barberis, Dotti, V.). Since the forms Φ_I and Ω are G-invariant, the quotient $\frac{\Omega^n}{\Phi_I}$ is constant. Rescaling, we obtain that all HKT-nilmanifolds are Calabi-Yau HKT.

Claim: Let (M,I,J,K,g) be a Calabi-Yau HKT-manifold. Then (M,J,g) is balanced, that is, $d(\omega_J^{2n-1})=0$.

Proof: $\omega_J^{2n-1} = \text{Re}(\Omega^{n-1} \wedge \Omega^n)$. However,

$$d(\Omega^{n-1} \wedge \overline{\Omega}^n) \xrightarrow{\text{Hodge decomposition}} \partial(\Omega^{n-1} \wedge \overline{\Omega}^n)$$
$$= (n-1)\partial\Omega \wedge \Omega^{n-2} \wedge \overline{\Omega}^n + \Omega^{n-1} \wedge \partial(\overline{\Omega}^n)$$

The first term vanishes because Ω is HKT, the second because $\overline{\Omega}^n$ is closed.