Hyperkähler SYZ conjecture and semipositive line bundles

Misha Verbitsky

November 14, 2008,

St. Pierre de Chartreuse

Hyperkähler manifolds

DEFINITION: A hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called **simple** if $H^1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering, which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

Calabi-Yau theorem gives a unique Ricci-flat Kähler metric on M, in any Kähler class, if $c_1(M) = 1$. If M is also holomorphically symplectic, this metric is **hyperkähler** (Kähler with respect to $\mathbb{C}P^1$ of complex structures). It follows from Bochner's vanishing, Berger's classification of irreducible holonomy groups, and de Rham's decomposition theorem.

Holomorphic Lagrangian fibrations

THEOREM: (Matsushita, 1997)

Let $\pi : M \longrightarrow X$ be a surjective holomorphic map from a hyperkähler manifold M to X, whith $0 < \dim X < \dim M$. Then $\dim X = 1/2 \dim M$, and the fibers of π are holomorphic Lagrangian (this means that the symplectic form vanishes on $\pi^{-1}(x)$).

DEFINITION: Such a map is called **holomorphic Lagrangian fibration**.

REMARK: The base of π is conjectured to be rational. Hwang (2007) proved that $X \cong \mathbb{C}P^n$, if it is smooth. Matsushita (2000) proved that it has the same rational cohomology as $\mathbb{C}P^n$.

REMARK: The base of π has a natural flat connection on the smooth locus of π . The combinatorics of this connection can be used to determine the topology of M (Strominger-Yau-Zaslow, Kontsevich-Soibelman).

If we want to learn something about M, it's recommended to start from a holomorphic Lagrangian fibration (if it exists).

The SYZ conjecture

DEFINITION: Let (M, ω) be a Calabi-Yau manifold, Ω the holomorphic volume form, and $Z \subset M$ a real analytic subvariety, Lagrangian with respect to ω . If $\Omega|_Z$ is proportional to the Riemannian volume form, Z is called **special Lagrangian** (SpLag).

(Harvey-Lawson): **SpLag subvarieties minimize Riemannian volume in their cohomology class.** This implies that their moduli are finite-dimensional.

A trivial remark: A holomorphic Lagrangian subvariety of a hyperkähler manifold (M, I) is special Lagrangian on (M, J), where (I, J, K) is a quaternionic structure associated with the hyperkähler structure.

Another trivial remark: A smooth fiber of a Lagrangian fibration has trivial tangent bundle. In particular, **a smooth fiber of a holomorphic Lagrangian fibration is a torus.**

Strominger-Yau-Zaslow, "Mirror symmetry as T-duality" (1997). Any Calabi-Yau manifold admits a Lagrangian fibration with special Lagrangian fibers. Taking its dual fibration, one obtains "the mirror dual" Calabi-Yau manifold.

The hyperkähler SYZ conjecture

CONJECTURE: (Tyurin, Bogomolov, Hassett-Tschinkel, Huybrechts, Sawon). Any hyperkähler manifold can be deformed to a manifold admitting a holomorphic Lagrangian fibration.

REMARK: This is the only known source of SpLag fibrations.

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = q(\eta, \eta)^n$, for some rational quadratic form q on $H^2(M)$.

DEFINITION: This form is called **Bogomolov-Beauville-Fujiki form**. It is defined uniquely, up to a sign.

A trivial observation: Let $\pi : M \longrightarrow X$ be a holomorphic Lagrangian fibration, and ω_X a Kähler class on X. Then $\eta := \pi^* \omega_X$ is nef, and satisfies $q(\eta, \eta) = 0$.

The hyperkähler SYZ conjecture: Let *L* be a nef line bundle on a hyperkähler manifold, with q(L,L) = 0. Then *L* is semiample.

Semipositive line bundles

DEFINITION: A holomorphic line bundle is called **semipositive** if it has a (smooth) metric with semipositive curvature. It is obviously nef.

MAIN THEOREM: Let *L* be a semipositive line bundle on a hyperkähler manifold, with q(L,L) = 0. Then L^k is effective, for some k > 0.

Plan of a proof:

Step 1. Show that $H^*(L^N)$ is non-zero, for all N.

Step 2. Construct an embedding

 $H^{i}(L^{N}) \hookrightarrow H^{0}(\Omega^{2n-i}(M) \otimes L^{N}).$

Step 3. THEOREM: Let *L* be a nef bundle on a hyperkähler manifold, with q(L,L) = 0. Assume that $H^0(\Omega^*(M) \otimes L^N) \neq 0$, for infinitely many values of *N*. Then L^k is effective, for some k > 0.

SYZ conjecture

M. Verbitsky

Step 1. Show that $H^*(L^N)$ is non-zero, for all N.

This is actually clear, because $\chi(L) = P(q(L,L))$, where P is a polynomial with coefficients depending on Chern classes of M only (Fujiki). Then

$$\chi(L) = \chi(\mathcal{O}_M) = n + 1$$

(Bochner's vanishing).

Step 2. Construct an embedding

$$H^{i}(L^{N} \otimes K) \hookrightarrow H^{0}(\Omega^{2n-i}(M) \otimes L^{N}).$$

This is called **"Hard Lefschetz theorem with coefficients in** *L*" (Takegoshi, Mourougane, Demailly-Peternell-Schneider).

Idea of a proof: Let $B := L^*$. Then

$$\Delta_{\nabla'} - \Delta_{\overline{\partial}} = [\Theta_B, \Lambda] \leqslant 0,$$

therefore $H^i(B^N) = \ker \Delta_{\overline{\partial}} \subset \ker \Delta_{\nabla'}$, and the last space is identified with B^* -valued holomorphic differential forms.

If *L* has a semi-positive singular metric, a similar map exists, with coefficients in appropriate multiplier ideals.

Kobayashi-Hitchin correspondence

DEFINITION: Let F be a coherent sheaf over an n-dimensional compact Kähler manifold M. Let

slope(F) :=
$$\frac{1}{\operatorname{rank}(F)} \int_M \frac{c_1(F) \wedge \omega^{n-1}}{\operatorname{vol}(M)}$$

A torsion-free sheaf F is called **stable** if for all subsheaves $F' \subset F$ one has slope(F') < slope(F). If F is a direct sum of stable sheaves of the same slope, F is called **polystable**.

DEFINITION: A Hermitian metric on a holomorphic vector bundle *B* is called **Yang-Mills** (Hermitian-Einstein) if $\Theta_B \wedge \omega^{n-1} = \text{slope}(F) \cdot \text{Id}_B \cdot \omega^n$.

Kobayashi-Hitchin correspondence (Donaldson, Uhlenbeck-Yau) Let *B* be a holomorphic vector bundle. Then *B* admits Yang-Mills metric if and only if *B* is polystable.

COROLLARY: Any tensor product of polystable bundles is polystable.

EXAMPLE: Let M be a Kähler-Einstein manifold. Then TM is polystable.

Subsheaves in tensor bundles have pseudoeffective $-c_1(E)$

REMARK: Let M be a Calabi-Yau (e.g., hyperkähler) manifold. Then TM admits a Hermitian-Einstein metric for any Kähler class (Calabi-Yau theorem). **Therefore,** TM **is stable for all Kähler structures.**

THEOREM: Let M be a compact hyperkähler manifold, \mathfrak{T} a tensor power of a tangent bundle (such as a bundle of holomorphic forms), and $E \subset \mathfrak{T}$ a coherent subsheaf of \mathfrak{T} . Then the class $-c_1(E) \in H^{1,1}_{\mathbb{R}}(M)$ is pseudoeffective.

Step 0:

$$\int_M \alpha_{-1} \wedge \ldots \wedge \alpha_{2n} = \frac{1}{2n!} \sum q(\alpha_{i_1}, \alpha_{i_2}) q(\alpha_{i_3}, \alpha_{i_3}) \ldots$$

where $\alpha_i \in H^2(M)$, and the sum is taken over all 2*n*-tuples (Fujiki). We chose the sign of *q* in such a way that $q(\omega, \omega) > 0$ for any Kähler class.

Step 1: Since \mathfrak{T} is polystable, slope $(E) \leq 0$. Then $\int_M c_1(E) \wedge \omega^{n-1} \leq 0$ for any Kähler class ω . Equivalently, $q(c_1(E), \omega) \leq 0$. This means that **the class** $-c_1(E)$ lies in the dual nef cone.

Subsheaves in tensor bundles have pseudoeffective $-c_1(E)$ (part 2)

Step 2: Let $M_{\alpha} \xrightarrow{\varphi} M$ be a hyperkähler manifold birationally equivalent to M. Then φ is non-singular in codimension 1. Therefore, $H^2(M) = H^2(M_{\alpha})$.

Step 3: Let \mathfrak{T}_{α} be the same tensor power of TM_{α} as \mathfrak{T} . Clearly, \mathfrak{T}_{α} can be obtained as a saturation of $\varphi^*\mathfrak{T}$. Taking a saturation of $\varphi^*E \subset \varphi^*\mathfrak{T}$, we obtain a coherent subsheaf $E_{\alpha} \subset \mathfrak{T}_{\alpha}$, with $c_1(E_{\alpha}) = c_1(E)$.

Step 4: We obtained that the class $-c_1(E)$ lies in the dual nef cone of M_{α} , for all birational models of M.

Step 5: We call the union of nef cones for all birational hyperkähler models of *M* the birational nef cone. The birational nef cone is dual to the pseudoeffective cone (Huybrechts, Boucksom). Therefore, $-c_1(E)$ is pseudoeffective.

L-valued holomorphic forms are non-singular in codimension 1

LEMMA: Hodge's index theorem. Let $L \in H^{1,1}(M)$ a nef class satisfying q(L,L) = 0, and $\nu_0 \in H^{1,1}(M)$ a class satisfying $q(L,\nu_0) = 0$ and $q(\nu_0,\nu_0) \ge 0$. Then L is proportional to ν_0 .

THEOREM: Let M be a compact hyperkähler manifold, L a nef line bundle satisfying q(L,L) = 0, \mathfrak{T} some tensor power of a tangent bundle, and $\gamma \in H^0(\mathfrak{T} \otimes L)$. Assume no power of L is effective. Then γ is non-singular in codimension 1.

Step 1: Let L_0 be a rank 1 subsheaf of \mathfrak{T} generated by $\gamma \otimes L^{-1}$. Then $\nu := -c_1(L_0)$ is pseudoeffective.

Step 2: By definition, γ is a section of a rank one sheaf $L \otimes L_0$. Therefore, $D = c_1(L \otimes L_0)$, where D is a union of all divisorial components of the zero set of γ . We have $c_1(L) = D + \nu$.

L-valued holomorphic forms are non-singular in codimension 1 (part 2)

Step 3: We have $c_1(L) = D + \nu$. Since *L* is nef, ν and *D* are pseudoeffective, we have $q(L,\nu) \ge 0$ and $q(L,D) \ge 0$. Then

 $0 = q(L,L) = q(L,\nu) + q(L,D) \ge 0.$

We obtain that $q(L,\nu) = q(L,D) = 0$.

Step 4: Divisorial Zariski decomposition (Boucksom). For any pseudoeffective ν , we have $\nu = \nu_0 + \sum \alpha_i E_i$, where ν_0 is birational nef, α_i positive and rational, and E_i are exceptional divisors.

Step 5: The same argument as in Step 3 can be used to show that $q(L, \nu_0) = q(L, E_i) = 0$.

Step 6: Hodge index theorem implies $\nu_0 = \lambda c_1(L)$. This gives

$$c_1(L) = D + \lambda c_1(L) + \sum \alpha_i E_i$$

Therefore, $(1 - \lambda)c_1(L)$ is effective. By our assumptions, L is not effective. **Therefore,** $\lambda - 1 = 0$, and $D + \sum \alpha_i E_i = 0$.

From *L*-valued differential forms to sections of *L*

THEOREM: Let *L* be a nef bundle on a hyperkähler manifold, with q(L,L) = 0. Assume that $H^0(\Omega^*(M) \otimes L^N) \neq 0$, for infinitely many values of *N*. Then L^k is effective, for some k > 0.

Step 1: Suppose that $L^{\otimes k}$ is never effective. Then any non-zero section of $\Omega^*(M) \otimes L^N$ is non-degenerate outside of codimension 2, as we have just shown.

Step 2: Let $E_k \subset \bigoplus_i \Omega^i M$ be subsheaf generated by global sections of $E \otimes L^{\otimes i}$, i = 1, ..., k. Let $E_{\infty} := \bigcup E_k$, and r be its rank. For any r-tuple of linearly independent (at generic point) sections of E_{∞} , $\gamma_1 \in E \otimes L^{\otimes i_1}, ..., \gamma_r \in E \otimes L^{\otimes i_r}$, the determinant $\gamma_1 \wedge ... \wedge \gamma_r$ is a section of det $E_{\infty} \otimes L^N$, $N = \sum i_k$. non-vanishing in codimension 1, hence non-degenerate.

Step 3: This gives an isomorphism det $E_{\infty} \cong L^N$, with $N = \sum i_k$ as above.

Step 4: There are infinitely many choices of γ_i , with i_k going to ∞ , hence det $E_{\infty} \cong L^N$ cannot always hold. **Contadiction! We proved that** L^k is effective.

13

Multiplier ideal sheaves.

REMARK: If L is nef, it does not imply that L is semipositive. However, a singular semipositive metric always exists.

THEOREM (*): Let M be a simple hyperkähler manifold, L a nef bundle on M, with positive singular metric, q(L,L) = 0, and let $\mathcal{I}(L^m)$ be the sheaf of L^2 -integrable holomorphic sections of L^m . Assume that for infinitely many m > 0, $H^i(\mathcal{I}(L^m)) \neq 0$. Then L^N is effective, for some N > 0.

Proof: Using the multiplier ideal version of hard Lefschetz, we obtain that $H^*(\mathcal{I}(L^m)) \neq 0$ implies that $H^0(\Omega^*(M) \otimes L^m)$ is non-zero. Applying the above theorem, we obtain that L^k is effective.

SPECULATION: Let *L* be a singular nef bundle. Consider a function $k \xrightarrow{\chi_L} \chi(\mathcal{I}(L^k))$. Is it possible that $\chi_L(0) = n + 1$, and $\chi_L(k) = 0$ for all k > 0, except a finite number?

If it is impossible, assumptions of (*) hold, and L^N is effective.

REMARK: If *L* has algebraic singularities, $\chi_L(k)$ is either periodic, or unbounded, hence L^N is effective.