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History of algebraic geometry.

1. XIX centrury: Riemann, Klein, Poincaré. Study of elliptic integrals
and elliptic functions leads to the notion of a Riemannian surface of a
holomorphic function. In a modern language, Riemann surface is a smooth
2-dimensional manifold, covered by open disks in R2 = C, with transition
functions holomorphic.

A Riemann surface for a square root.
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History of algebraic geometry.

2. Italian school (1885-1935):

Segre, Severi, Enriques, Castelnuovo.

An affine algebraic variety is a subset in C defined as a set of common zeroes

of a system of algebraic equations. Two varieties are equivalent, if there

exists a polynomial bijection from one to another.

1. Can be defined over any algebraically closed field.

2. If the equations are homogeneous, they define a (compact) subset in a

projective space CPn.

3. Definition is not intrinsic.
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An elliptic curve
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Spectrum of a ring: a digression.

1. Marshall Stone’s spectra of boolean rings (1936).

A boolean ring A is a commutative ring with an additional axiom: x2 = x

for all x. The Stone spectrum Spec(A) of a boolean ring is the set of all

homomorphisms from A to the ring Z/2Z. This space has topology: an base

of open sets is given by

Uf := {ϕ : A−→ Z/2Z | ϕ(f) 6= 0}

where f ∈ A. This topology is completely disconnected (there exists a base

of closed open sets) and Hausdorff. Stone proved that A is isomorphic to the

ring of continuous functions from Spec(A) to Z/2Z, and this is “equivalence of

categories” (between completely disconnected Hausdorff spaces and Boolean

rings).
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2. Grothendieck’s notion of a spectrum. A is a commutative ring,

Spec(A) is the set of all prime ideals with Zariski topology, where the base

of open sets is given by

Uf := {I ∈ A | f 6∈ I}

for some f ∈ A. This is a ringed space: with every open set one associates

a ring Af (the localization A[f−1]), and inclusion of open sets correspond to

ring homomorphisms, with associativity axiom satisfied. For an open subset

U of a ringed space, the corresponding ring is denoted by OU (it is called the

structure sheaf). Examples: the rings of functions (smooth, continuous,

complex analytic) on a manifold define a structure of a ringed space.

An exercise:

Check that Stone’s spectrum is a special case of Grothendieck’s spectrum.
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3. Modern approach: Zariski, Weil, Grothendieck, Dieudonné

A scheme is a ringed space which is locally isomorphic to a spectrum of a

ring (with Zariski topology). Morphisms of schemes are morphisms of ringed

spaces: continuous maps X
ϕ−→ Y , with ring homomorphisms

ϕ∗ : OU −→Oϕ−1(U)

defined for any open U ⊂ Y and commuting with restrictions to subsets.

0. Scheme geometry. All the usual geometric notions (compactness, sep-

arability, smoothness...) have their scheme-theoretic versions. Varieties are

schemes without nilpotent elements in OX.

1. Schemes are closed under all natural operations.

(taking products, a graph of a morphism, intersection, union...)
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2. The moduli spaces are again schemes (when finite-dimensional).

The moduli spaces are the sets parameterizing various algebro-geometric

objects (subvarieties, morphisms, fiber bundles) and equipped with a natural

algebraic structure. Grothendieck proved that the moduli exist in scheme

category, in very general assumptions.

3. Can be used in number theory.

The rings do not need to be defined over C, or any other algebraically closed

field. In particular, Spec(Z) is a scheme, which can be studied in geometric

terms. This was the original motivation of Grothendieck (at least, one of his

motivations).

4. Desingularization (Hironaka).

In characteristic 0, any variety X admits a desingularization, that is, a proper,

surjective map X̃ −→X, with X̃ smooth, and generically one-to-one.
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Complex geometry (Grauert, Oka, Cartan, Serre...)

A complex manifold is a manifold with an atlas of open subsets in Cn, and

translation maps complex analytic.

A complex analytic subvariety is a closed subvariety, locally defined as a

zero set of a system of complex analytic equations. An complex analytic

variety is a ringed topological space, locally isomorphic to a closed subvariety

of an open ball B ⊂ Cn. If we allow nilpotents in the structure sheaf, we

obtain the notion of a complex analytic space.

Complex spaces are just as good as schemes: the products/graphs/moduli

spaces of complex spaces are again complex spaces, and Hironaka’s desingu-

larization works as well.
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Serre’s GAGA (Géométrie Algébrique - Géométrie Analitique, 1956):

Some complex varieties can be defined using algebraic equations, they are

called algebraic. Serre has proved that a complex subvariety of a compact

algebraic variety is algebraic, and holomorphic map of compact algebraic vari-

eties is algebraic. The algebraic varieties are special case of complex analytic!

The topology of complex varieties is infinitely more complicated.
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Kähler manifolds.

A complex manifold is equipped with a natural map I TM −→ TM , I2 = − Id,
called the complex structure map. A Riemannian metric is called Hermitian
if g(Ix, y) = g(x, Iy). In this situation ω(x, y) = g(x, Iy) is a differential form,
called Hermitian form. The following conditions are equivalent

1. dω = 0.

2. ω is parallel (preserved by the Levi-Civita connection), that is, ∇ω = 0.

3. Flat approximation. At each point M has complex coordinates, such
that g is approximated at this point by a standard (flat) Hermitian structure
in this coordinates, up to order 2.

If any of these conditions is satisfied, the metric is called Kähler
(after Erich Kähler, 1938).

NB: Kähler manifolds are symplectic.
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Properties of Kähler manifolds.

1. The U(n +1)-invariant metric on CPn is called the Fubini-Study metric
(its uniqueness and existence follows easily from U(n)-invariance). Since Cn

does not have U(n)-invariant 3-forms, Fubini-Study metric is Kähler.

2. A submanifold of a Kähler manifold is again Kähler (restriction of ω is still
closed). Therefore, all algebraic manifolds are Kähler.

3. Topology of compact Kähler manifolds is tightly controlled (all rational
cohomology operations vanish, etc.) The fundamental group is especially easy
to control. It is conjectured that the isomorphism problem for fundamental
groups of compact Kähler manifolds has an algorithmic solution.

4. By contast, any finitely-generated, finitely-presented group can be a fun-
damental group of a compact complex manifold. Therefore the problem of
recursively enumerating the fundamental groups cannot be solved.

5. Topology of complex manifolds is infinitely more complicated!
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Quaternionic geometry: an introduction

Isometries of R2 are expressed in terms of complex numbers. This allows one

to solve the problems of geometry algebraically.

QUESTION: Can we do that in dimension 3?

ANSWER: Yes!
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Sir William Rowan Hamilton
(August 4, 1805 – September 2, 1865)

14



Algebraic geometry over H M. Verbitsky

Broom Bridge

“Here as he walked by on the 16th of October 1843 Sir William Rowan Hamil-
ton in a flash of genius discovered the fundamental formula for quaternion
multiplication

I2 = J2 = K2 = IJK = −1

and cut it on a stone of this bridge.”
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Fast forward 70 years.

Élie Joseph Cartan

(9 April 1869 – 6 May 1951)
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“Quaternionic structures” in the sense of Elie Cartan don’t exist.

THEOREM: Let f : Hn −→Hm be a function, defined locally in some open

subset of n-dimensional quaternion space Hn. Suppose that the differential

Df is H-linear. Then f is a linear map.

Proof (a modern one): The graph of f is a “hyperkähler submanifold” in

Hn ×Hm, hence “geodesically complete”, hence linear.
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Algebraic geometry over H.

Over C, we have 3 distinct notions of “algebraic geometry”:

1. Schemes over C.

2. Complex manifolds.

3. Kähler manifolds.

The first notion does not work for H, because polynomial functions on Hn

generate all real polynomials on R4. The second version does not work, be-

cause any quaternionic-differentiable function is linear. The third one works!

Hyperkähler manifolds.

18



Algebraic geometry over H M. Verbitsky

Marcel Berger
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Classification of holonomies.

Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds
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Eugenio Calabi
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Definition: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators I, J, K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

Holomorphic symplectic geometry

A hyperkähler manifold (M, I, J, K), considered as a complex manifold (M, I),

is holomorphically symplectic (equipped with a holomorphic, non-degenerate

2-form). Recall that, M is equipped with 3 symplectic forms ωI, ωJ, ωK.

Lemma: The form Ω := ωJ +
√
−1 ωK is a holomorphic symplectic 2-form

on (M, I).
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Converse is also true, as follows from the famous conjecture, made by Calabi

in 1952.

Theorem: (S.-T. Yau, 1978) Let M be a compact, holomorphically symplec-

tic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely

determined by the cohomology class of its Kähler form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-

ometry
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Induced complex structures are complex structures of form

L := aI + bJ + cK, a2 + b2 + c2 = 1.

They are non-algebraic (mostly). Indeed, for generic a, b, c, (M, L) has no

divisors. The set of induced complex structures is parametrized by S2 ∼= CP1.

These complex structures can be glued together to form a “twistor space”,

Tw(M)−→ CP1, holomorphically fibered over CP1. The hyperkähler struc-

ture can be defined in terms of a twistor space. You can have “hyperkähler

singular spaces”, and even schemes.
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“Hyperkähler algebraic geometry” is almost as good as the usual one.

Define trianalytic subvarieties as closed subsets which are complex analytic
with respect to I, J, K.

0. Trianalytic subvarieties are singular hyperkähler.

1. Let L be a generic induced complex structure. Then all complex subvari-
eties of (M, L) are trianalytic.

2. A normalization of a hyperkähler variety is smooth and hyperkähler. This
gives a desingularization (“hyperkähler Hironaka”).

3. A complex deformation of a trianalytic subvariety is again trianalytic, the
corresponding moduli space is (singularly) hyperkähler.

4. Similar results (also very strong) are true for vector bundles which are
holomorphic under I, J, K (“hyperholomorphic bundles”)
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