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Definition: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators

I, J, K : TM −→ TM,

satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

Holonomy of a hyperkähler manifold is Sp(n).

Indeed, Levi-Civita connection preserves I, J, K, because M is Kähler. The group of matrices

preserving quaternionic structure and metric is Sp(n).

Converse is also true. Hyperkähler manifolds are often defined as manifolds

with affine connection and holonomy in Sp(n).
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Holomorphic symplectic geometry

A hyperkähler manifold (M, I, J, K, g), considered as a complex manifold (M, I), is holomor-

phically symplectic (equipped with a holomorphic, non-degenerate 2-form). Recall that M is

equipped with 3 symplectic forms ωI(·, ·) = g(·, I·), ωJ, ωK.

LEMMA: The form Ω := ωJ +
√
−1 ωK is a holomorphic symplectic 2-form

on (M, I).

Converse is also true.

THEOREM: (E. Calabi, 1952, S.-T. Yau, 1978) Let M be a compact,
holomorphically symplectic Kähler manifold. Then M admits a hyperkähler
metric, which is uniquely determined by the cohomology class of its Kähler
form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-
ometry
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HYPERCOMPLEX MANIFOLDS

“Hyperkähler manifolds without a metric”

Definition: Let M be a smooth manifold equipped with endomorphisms

I, J, K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are integrable almost complex structures. Then

(M, I, J, K)

is called a hypercomplex manifold.
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EXAMPLES:

Compact hypercomplex manifolds which are not hyperkähler

1. In dimension 1 (real dimension 4), we have a complete classification, due
to C. P. Boyer (1988)

2. Many homogeneous examples, due to D. Joyce and physicists Ph. Spindel,
A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).

3. Some nilmanifolds admit homogeneous hypercomplex structure (M. L.
Barberis, I. Dotti, A. Fino) (1990-ies).

4. Some inhomogeneous examples are constructed by deformation or as fiber
bundles.

In dimension > 1, no classification results are known (and no conjectures
either).
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OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

Theorem: (M. Obata, 1952) Let (M, I, J, K) be a hypercomplex manifold.

Then M admits a unique torsion-free affine connection preserving I, J, K.

Converse is also true. Suppose that I, J, K are operators defining quater-

nionic structure on TM , and ∇ a torsion-free, affine connection preserving I,

J, K. Then I, J, K are integrable almost complex structures, and (M, I, J, K)

is hypercomplex.

Holonomy of Obata connection lies in GL(n, H). A manifold equipped with

an affine, torsion-free connection with holonomy in GL(n, H) is hypercomplex.

This can be used as a definition of a hypercomplex structure.
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QUESTIONS

1. Given a complex manifold M , when M admits a hypercomplex structure?

How many?

2. What are possible holonomies of Obata connection, for a compact hyper-

complex manifold? Can SL(n, H) be a holonomy group?

3. Describe the structure of automorphism group of a hypercomplex manifold.

THEOREM: Let (M, I, J, K) be a compact hypercomplex manifold. Assume

that the complex manifold (M, I) admits a Kähler structure. Then (M, I) is

hyperkähler.
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Quaternionic Hermitian structures

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold, and g a Rieman-
nian metric. We say that g is quaternionic Hermitian if I, J, K are orthogonal
with respect to g.

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Hermitian
forms

ωI(·, ·) = g(·, I·), ωJ , ωK

(real, but not closed). Then Ω = ωJ +
√
−1 ωK is of Hodge type (2,0) with

respect to I.

If dΩ = 0, (M, I, J, K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

∂Ω = 0, ∂ : Λ2,0(M, I)−→ Λ3,0(M, I)
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DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian met-

ric, and Ω = ωJ +
√
−1 ωK the corresponding (2,0)-form. We say that g is

HKT (“weakly hyperkähler with torsion”) if

∂Ω = 0.

HKT-metrics play in hypercomplex geometry the same role as Kähler

metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of an

“HKT-class” (similar to Kähler class) in a certain finite-dimensional coholol-

ogy group. Two metrics in the same HKT-class differ by a potential, which

is a function.

2.When (M, I) has trivial canonical class, a version of Lefschetz-type identities

can be proven giving an sl(2)-action on cohomology.
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A digression: some obvious topological restrictions on (M, I), when
(M, I) admits a hypercomplex structure.

0. Quaternionic Hermitian structure always exists.

1. Complex dimension is even.

2. The canonical line bundle Λn,0(M, I) of (M, I) is always trivial topologically.
Indeed, a non-degenerate section of a canonical line bundle is provided by a
top power of an form Ω associated with some quaternionic Hermitian strucure.
In particular,

c1(M, I) = 0.

3. When (M, I) admits a Kähler structure,

c1(M, I) = 0

implies that the canonical bundle is trivial holomorphically. This follows from
Calabi-Yau theorem.
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Lefschetz identities for Kähler manifolds.

The usual Lefschetz sl(2)-action is constructed as follows. Let M be a Kähler

manifold, dimC M = n, ω its Kähler form, L : Λi(M)−→ Λi+2(M) the operator

of multiplication by ω, Λ its Hermitian adjoint, and H acts on Λi(M) as a scalar

multiplication by (n− i). Then (L,Λ, H) is an sl(2)-triple. It commutes with

the Laplacian, giving an sl(2)-action on cohomology.

Two ingredients of the proof:

1. Use linear algebra to show that (L,Λ, H) is an sl(2)-triple. This is true for

any almost complex Hermitian manifold

2. Show that (L,Λ, H) commutes with the Laplacian. Need Kähler identities

for this.
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Lefschetz identities for HKT-manifolds with trivial canonical bundle.

THEOREM: Let (M, I, J, K, g) be a hypercomplex manifold, dimH(M) = n.

Assume that the canonical bundle of MI := (M, I), is trivial, as a holomor-

phic vector bundle. Consider the Dolbeault resolution for the holomorphic

cohomology H∗(MI ,O)

Λ0(MI)
∂−→ Λ0,1(MI)

∂−→ Λ0,2(MI)
∂−→ ...

The multiplication map L(η) = η∧Ω commutes with the differential, because

Ω is ∂-closed. Let Λ be its Hermitian adjoint, and H(η) = i − n, for all

η ∈ Λ0,i(MI). Then (L,Λ, H) is an sl(2)-triple acting on cohomology.
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The proof of HKT Lefschetz identities:

1. Linear algebra (same as in the usual Kähler case).

2. An HKT-analogue of Kähler identities

(“supersymmetry for HKT-manifolds”).

We immediately obtain that the cohomology class of Ω in H2(MI ,O) is non-

trivial (often false, when canonical bundle is non-trivial). Its top power is

non-trivial in H2n(MI ,O) (Lk acts as an isomorphism from Hn−k(MI ,O) to

Hn+k(MI ,O)).
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Hypercomplex structures on Kähler manifolds

0. Let (M, I) be a manifold admitting Kähler structure and a hypercomplex structure. The
canonical class of (M, I) is trivial by Calabi-Yau.

1. From a Kähler form, an HKT form is obtained by averaging with SU(2) (the group of
unitary quaternions, acting on TM).

2. The cohomology class of Ω is non-trivial by HKT-Lefschetz.

3. Since (M, I) is Kähler, this class is represented by a holomorphic form Ω̃. The top power
of this form is non-trivial, by HKT-Lefschetz.

4. The top power of Ω̃n is a non-trivial holomorphic section of a canonical class, which is
trivial. Therefore, Ω̃n is nowheere vanishing, and (M, I) is holomorphic symplectic.

5. Using Calabi-Yau to obtain that it is hyperkähler.
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Lefschetz identities for general HKT-manifolds.

A full strength theorem (don’t need it).

THEOREM: Let (M, I, J, K, g) be a hypercomplex manifold, K the canonical

bundle of MI := (M, I), K1/2 its square root (considered as a holomorphic

vector bundle). Consider the map

L : Hi(MI , K
1/2)−→Hi+2(MI , K

1/2)

mapping a class represented by a form

η ∈ Λ0,p(MI)⊗K1/2

to η ∧ Ω (this defines a correct operation on cohomology, because Ω is ∂-

closed. Then L is a term in an sl(2)-triple acting on Hi(MI , K
1/2).

It is a theorem about harmonic spinors. When K1/2 is non-trivial, the coho-

mology groups Hi(MI , K
1/2) are usually empty.
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