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Generalized Monge-Ampere equation on complex manifold.

Data: M - compact complex n-manifold, Φ a closed, positive (p, p)-form. A

(k, k)-form ν is called (strictly) Φ-positive if ν ∧ η ∧ Φ is (strictly) positive,

for any (i, i)-form η for which η ∧ Φ is (strictly) positive. A (k, k)-form ν is

called Φ-closed if ν ∧ η ∧ Φ is closed for for any (i, i)-form η for which η ∧ Φ

is closed. A (1, 1)-form ν is called Φ-Kähler if it is strictly Φ-positive and

Φ-closed.

Example:

Φ = (−
√
−1 )pζ1 ∧ ζ1 ∧ ... ∧ ζp ∧ ζp,

where ζi are holomorphic (1, 0)-forms. Then Φ-positivity (closedness) means

positivity (closedness) on the complex foliation defined by
⋂

ker ζi.
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Generalized Monge-Ampere equation:

(ω + ∂∂ϕ)n−p ∧ Φ = Afef VolM

Here f is an arbitrary function, ϕ a solution we are looking for, Af is a

constant, dependent on f , ω a Φ-Kähler form, VolM is a fixed volume form

on M , ω + ∂∂ϕ is Φ-Kähler.

Observation 1: Solutions are unique. Indeed, suppose that ω and ω1 =

ω + ∂∂ϕ are both solutions. Then

0 = (ω + ∂∂ϕ)n−p ∧ Φ − ωn−p ∧ Φ = ∂∂ϕ ∧

n−p−1∑
k=1

ωk
1 ∧ ωn−p−k

 ∧ Φ


The form in brackets is strictly positive. When ϕ reaches maximum, or

minimum, ∂∂ϕ ∧
[
...

]
cannot vanish (“generalized maximum principle”).
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Generalized Monge-Ampere equation: more observations

2. M is not required to be Kähler. One obtains interesting structures on
non-Kähler manifolds (such as hypercomplex ones).

3. Hessian equation. When M is Kähler, and Φ = ωn, we have

(ω + ∂∂ϕ)n−p ∧ Φ = Pn−p(a1, ...an)

where ai are eigenvalues of the Hermitian form ω + ∂∂ϕ, and Pn−p the fun-
damental symmetric polynomial. This is called complex Hessian equation
(B locki etc.).

Conjecture: Under reasonable assumptions, solution exists.

Question 1: Is it known for foliations?

Question 2: What is known about existence
of solutions for complex Hessian equation?
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Definition: (E. Calabi, 1978)

Let (M, g) be a Riemannian manifold equipped with three complex structure

operators

I, J, K : TM −→ TM,

satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called hyperkähler.

Holonomy of a hyperkähler manifold is Sp(n).

Indeed, Levi-Civita connection preserves I, J, K, because M is Kähler. The group of matrices

preserving quaternionic structure and metric is Sp(n).

Converse is also true. Hyperkähler manifolds are often defined as manifolds

with affine connection and holonomy in Sp(n).
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Holomorphic symplectic geometry

A hyperkähler manifold (M, I, J, K, g), considered as a complex manifold (M, I), is holomor-

phically symplectic (equipped with a holomorphic, non-degenerate 2-form). Recall that M is

equipped with 3 symplectic forms ωI(·, ·) = g(·, I·), ωJ, ωK.

LEMMA: The form Ω := ωJ +
√
−1 ωK is a holomorphic symplectic 2-form

on (M, I).

Converse is also true.

THEOREM: (E. Calabi, 1952, S.-T. Yau, 1978) Let M be a compact,
holomorphically symplectic Kähler manifold. Then M admits a hyperkähler
metric, which is uniquely determined by the cohomology class of its Kähler
form ωI.

Hyperkähler geometry is essentially the same as holomorphic symplectic ge-
ometry

6



Quaternionic Monge-Ampere M. Verbitsky

HYPERCOMPLEX MANIFOLDS

“Hyperkähler manifolds without a metric”

Definition: Let M be a smooth manifold equipped with endomorphisms

I, J, K : TM −→ TM , satisfying the quaternionic relation

I2 = J2 = K2 = IJK = − Id .

Suppose that I, J, K are integrable almost complex structures. Then

(M, I, J, K)

is called a hypercomplex manifold.
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EXAMPLES:

Compact hypercomplex manifolds which are not hyperkähler

1. In dimension 1 (real dimension 4), we have a complete classification, due
to C. P. Boyer (1988)

2. Many homogeneous examples, due to D. Joyce and physicists Ph. Spindel,
A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).

3. Some nilmanifolds admit homogeneous hypercomplex structure (M. L.
Barberis, I. Dotti, A. Fino) (1990-ies).

4. Some inhomogeneous examples are constructed by deformation or as fiber
bundles.

In dimension > 1, no classification results are known (and no conjectures
either).
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OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

Theorem: (M. Obata, 1952) Let (M, I, J, K) be a hypercomplex manifold.

Then M admits a unique torsion-free affine connection preserving I, J, K.

Converse is also true. Suppose that I, J, K are operators defining quater-

nionic structure on TM , and ∇ a torsion-free, affine connection preserving I,

J, K. Then I, J, K are integrable almost complex structures, and (M, I, J, K)

is hypercomplex.

Holonomy of Obata connection lies in GL(n, H). A manifold equipped with

an affine, torsion-free connection with holonomy in GL(n, H) is hypercomplex.

This can be used as a definition of a hypercomplex structure.
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QUESTIONS

1. Given a complex manifold M , when M admits a hypercomplex structure?

How many?

2. What are possible holonomies of Obata connection, for a compact hyper-

complex manifold?

3. Describe the structure of automorphism group of a hypercomplex manifold.

THEOREM: Let (M, I, J, K) be a compact hypercomplex manifold. Assume

that the complex manifold (M, I) admits a Kähler structure. Then (M, I) is

hyperkähler.
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Quaternionic Hermitian structures

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold, and g a Rieman-
nian metric. We say that g is quaternionic Hermitian if I, J, K are orthogonal
with respect to g.

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Hermitian
forms

ωI(·, ·) = g(·, I·), ωJ , ωK

(real, but not closed). Then Ω = ωJ +
√
−1 ωK is of Hodge type (2,0) with

respect to I.

If dΩ = 0, (M, I, J, K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

∂Ω = 0, ∂ : Λ2,0(M, I) −→ Λ3,0(M, I)
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DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian met-

ric, and Ω = ωJ +
√
−1 ωK the corresponding (2, 0)-form. We say that g is

HKT (“weakly hyperk ”ahler with torsion”) if

∂Ω = 0.

HKT-metrics play in hypercomplex geometry the same role as Kähler

metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of an

“HKT-class” (similar to Kähler class) in a certain finite-dimensional coholol-

ogy group. Two metrics in the same HKT-class differ by a potential, which

is a function.

2.When (M, I) has trivial canonical bundle, a version of Hodge theory is

established giving an sl(2)-action on cohomology.
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Canonical bundle of a hypercomplex manifold.

0. Quaternionic Hermitian structure always exists.

1. Complex dimension is even.

2. The canonical line bundle Λn,0(M, I) of (M, I) is always trivial topologically.

Indeed, a non-degenerate section of canonical line bundle is provided by top

power of a form Ω associated with some quaternionic Hermitian strucure. In

particular,

c1(M, I) = 0.

It is non-trivial holomorphically in many cases. However, Λn,0(M, I) is trivial

and holonomy of Obata connection lies in SL(n, H) when M is a nilmanifold

(Barberis-Dotti-V., 2007)
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SU(2)-action on Λ∗(M)

The group SU(2) of unitary quaternions acts on TM , because quaternion

algebra acts. By multilinearity, this action is extended to Λ∗(M).

1. The Hodge decomposition Λ∗(M) =
⊕

Λp,q(M) is recovered from this

SU(2)-action. “Hypercomplex analogue of the Hodge decomposition”.

2. 〈ωI , ωJ , ωK〉 is an irreducible 3-dimensional representation of SU(2), for

any quaternionic Hermitian structure (“representation of weight 2”).

WEIGHT of a representation.

We say that an irreducible SU(2)-representation W has weight i if dim W =

i + 1. A representation is said to be pure of weight i if all its irreducible

components have weight i. If all irreducible components of a representation

W1 have weight 6 i, we say that W1 is a representation of weight 6 i. In

a similar fashion one defines representations of weight > i.
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Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of

representations of weights 6 i and 6 j has weight 6 i + j.

Clearly, Λ1(M) has weight 1. Therefore, Λi(M) has weight 6 i.

Let V i ⊂ Λi(M) be the maximal SU(2)-invariant subspace of weight < i.

By multiplicativity, V ∗ =
⊕

i V i is an ideal in Λ∗(M). We also have V i =

Λi(M) for i > 2n. Also, dV i ⊂ V i+1, hence V ∗ ⊂ Λ∗(M) is a differential ideal

in (Λi(M), d).

Denote by (Λ∗+(M), d+) the quotient algebra Λ∗(M)/V ∗.
We call it the quaternionic Dolbeault algebra (qD-algebra) of M .

A similar construction was given by Salamon in a more general situation.
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The quaternionic Dolbeault algebra can be computed explicitly, in terms of
the Hodge decomposition.

The Hodge decomposition is induced from the SU(2)-action, hence it is
compatible with weights: Λi

+(M) =
⊕

p+q=i Λp,q
+,I(M).

Let
√
−1 I be an element of the Lie algebra su(2) ⊗ C acting as

√
−1 (p − q)

on Λp,q(M). This vector generates the Cartan algebra of su(2). The su(2)-
action induces an isomorphism of Λp,q

+,I(M) for all {p, q|p + q = k, p, q > 0}.
This gives

Theorem:

Λp,q
+,I(M) ∼= Λ0,p+q(M, I).

This isomorphism is provided by the su(2) ⊗ C-action.

Indeed, the space Λ0,p(M, I) ⊂ Λp(M) is pure of weight p,
hence Λ0,p(M, I) coincides with Λ0,p

+,I(M)
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Differentials in the qD-complex

We extend J : Λ1(M) −→ Λ1(M) to Λ∗(M) by multiplicativity. Since I and J

anticommute on Λ1(M), we have J(Λp,q(M, I)) = Λq,p(M, I).

Denote by

∂J : Λp,0(M, I) −→ Λp,0(M, I)

the operator J ◦ ∂ ◦ J, where ∂ : Λ0,p(M, I) −→ Λ0,p(M, I) is the standard

Dolbeault differential. Then ∂, ∂J anticommute. Moreover, there exists a

multiplicative isomorphism of bicomplexes.
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Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the correspond-

ing (2, 0)-form: ωI(x, y) = 1
2Ω(x, J(y)), where x, y ∈ T 1,0(M). The HKT-

structures uniquely correspond to (2, 0)-forms which are

1. Real: J(Ω) = Ω

2. Closed: ∂Ω = 0.

2. Positive: Ω(x, J(x)) > 0, for any non-zero x ∈ T 1,0(M)

Locally, any HKT-metric is given by a potential: Ω = ∂∂Jϕ where ϕ is a

smooth function.

Any convex, and any strictly plurisubharmonic function is a potential

of some HKT-structure. Therefore, HKT-structures locally always exist.
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Quaternionic Monge-Ampere equation

Let M be an HKT-manifold with holonomy in SL(n, H). (this is equivalent to

having trivial canonical bundle). Then the canonical bundle is trivialized by a

form ΦI ∈ Λ2n,0, non-degenerate and satisfying J(ΦI) = ΦI.

Quaternionic Monge-Ampere equation:

(Ω + ∂∂Jϕ)n = AfefΦI

This equation can be rewritten as a generalized Monge-Ampere, hence

solutions are unique.
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Let R : Λ2p,0(M) −→ Λp,p
+,I(M) be the isomorphism provided by su(2)-action

as above.

We call a (2p, 0)-form η real if J(η) = η, and positive if η(x, J(x)) > 0.

Theorem 1: Let M be an HKT-manifold with holonomy in SL(n, H), and

ΦI ∈ Λ2n,0 the corresponding real trivialization of a canonical bundle. Then

R(ΦI) is closed and positive (replace ΦI by −ΦI if necessary). Moreover, for

any (2p, 0)-form η, the form R(η) ∧R(ΦI) is

1. Real if and only if η is real.

2. Positive if and only if η is positive.

3. Closed if and only if ∂η = 0.

4. R(∂∂Jϕ) ∧R(ΦI) = ∂∂ϕ ∧R(ΦI).
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Quaternionic Monge-Ampere and complex geometry

The quaternionic Monge-Ampere is equivalent to

R(ΦI) ∧R(Ω + ∂∂Jϕ)n = Afef VolM .

by Theorem 1 this is the same as

R(ΦI) ∧ (ωI + ∂∂ϕ)n = Afef VolM .

This is generalized Monge-Ampere!
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