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Generalized Monge-Ampere equation on complex manifold.

Data: M - compact complex n-manifold, ® a closed, positive (p,p)-form. A
(k,k)-form v is called (strictly) ®-positive if v An AP is (strictly) positive,
for any (4,7)-form n for which n A & is (strictly) positive. A (k, k)-form v is
called ®-closed if v An A P is closed for for any (i,7)-form n for which n A ®
is closed. A (1,1)-form v is called ®-Kahler if it is strictly ®-positive and
P-closed.

Example:
D = (—V—=1)PCLACI A .. ACp Ay,

where (; are holomorphic (1,0)-forms. Then ®-positivity (closedness) means
positivity (closedness) on the complex foliation defined by N ker (.
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Generalized Monge-Ampere equation:
(w4 89p)" P A = Arel Voly,

Here f is an arbitrary function, ¢ a solution we are looking for, Af IS a
constant, dependent on f, w a $-Kahler form, Vol,,; is a fixed volume form
on M, w—+ 80y is d-Kahler.

Observation 1: Solutions are unique. Indeed, suppose that w and wy =

w + 80y are both solutions. Then
n—p—1
( > w]f/\wnpk) /\<D]

k=1
The form in brackets is strictly positive. When ¢ reaches maximum, or

0= (w4+00p) " PAD —wW" PAD=00pA

minimum, 90y A cannot vanish (“generalized maximum principle’).
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Generalized Monge-Ampere equation: more observations

2. M is not required to be Kahler. One obtains interesting structures on
non-Kahler manifolds (such as hypercomplex ones).

3. Hessian equation. When M is Kahler, and & = ", we have

(w+ 80p)" P NP = P,_p(aq,...an)

where a; are eigenvalues of the Hermitian form w + 80y, and Pn—p the fun-
damental symmetric polynomial. This is called complex Hessian equation
(Btocki etc.).

Conjecture: Under reasonable assumptions, solution exists.
Question 1: Is it known for foliations?

Question 2: What is known about existence
of solutions for complex Hessian equation?
4
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Definition: (E. Calabi, 1978)
Let (M, g) be a Riemannian manifold equipped with three complex structure

operators
I,JK: TM — TM,
satisfying the quaternionic relation
P=J°=K?’=1JK=-1d.
Suppose that I, J, K are Kahler. Then (M,I,J, K, g) is called hyperkahler.

Holonomy of a hyperkahler manifold is Sp(n).

Indeed, Levi-Civita connection preserves I, J, K, because M is Kahler. The group of matrices

preserving quaternionic structure and metric is Sp(n).

Converse is also true. Hyperkahler manifolds are often defined as manifolds
with affine connection and holonomy in Sp(n).
5
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Holomorphic symplectic geometry

A hyperkahler manifold (M, I, J, K, g), considered as a complex manifold (M, I), is holomor-
phically symplectic (equipped with a holomorphic, non-degenerate 2-form). Recall that M is
equipped with 3 symplectic forms w;(-,:) = g(-,I-), wy, wk.

LEMMA: The form 2 (= wj + v—1 wg is a holomorphic symplectic 2-form
on (M,I). m

Converse is also true.

THEOREM: (E. Calabi, 1952, S.-T. Yau, 1978) Let M be a compact,
holomorphically symplectic Kahler manifold. Then M admits a hyperkahler
metric, which is uniquely determined by the cohomology class of its Kahler
form wy.

Hyperkahler geometry is essentially the same as holomorphic symplectic ge-
ometry
6
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HYPERCOMPLEX MANIFOLDS
“Hyperkahler manifolds without a metric”

Definition: Let M be a smooth manifold equipped with endomorphisms
I,J, K. TM — TM, satisfying the quaternionic relation

°P=J°2=K?=1JK=-1d.
Suppose that I, J, K are integrable almost complex structures. Then
(M,I,J,K)

is called a hypercomplex manifold.
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EXAMPLES:
Compact hypercomplex manifolds which are not hyperkahler

1. In dimension 1 (real dimension 4), we have a complete classification, due
to C. P. Boyer (1988)

2. Many homogeneous examples, due to D. Joyce and physicists Ph. Spindel,
A. Sevrin, W. Troost, A. Van Proeyen (1980-ies, early 1990-ies).

3. Some nilmanifolds admit homogeneous hypercomplex structure (M. L.
Barberis, I. Dotti, A. Fino) (1990-ies).

4. Some inhomogeneous examples are constructed by deformation or as fiber
bundles.

In dimension > 1, no classification results are known (and no conjectures
either).

3
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OBATA CONNECTION

Hypercomplex manifolds can be characterized in terms of holonomy

Theorem: (M. Obata, 1952) Let (M, I,J, K) be a hypercomplex manifold.
Then M admits a unique torsion-free affine connection preserving I, J, K.

Converse iIs also true. Suppose that I,J, K are operators defining quater-
nionic structure on T'M, and V a torsion-free, affine connection preserving 1,
J, K. Then I, J, K are integrable almost complex structures, and (M, I, J, K)
IS hypercomplex.

Holonomy of Obata connection lies in GL(n,H). A manifold equipped with
an affine, torsion-free connection with holonomy in GL(n,H) is hypercomplex.

This can be used as a definition of a hypercomplex structure.

9
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QUESTIONS

1. Given a complex manifold M, when M admits a hypercomplex structure?
How many?

2. What are possible holonomies of Obata connection, for a compact hyper-
complex manifold?

3. Describe the structure of automorphism group of a hypercomplex manifold.
THEOREM: Let (M, 1I,J,K) be a compact hypercomplex manifold. Assume

that the complex manifold (M, I) admits a Kahler structure. Then (M,I) is
hyperkahler.

10
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Quaternionic Hermitian structures

DEFINITION: Let (M, 1I,J, K) be a hypercomplex manifold, and g a Rieman-
nian metric. We say that g is quaternionic Hermitian if I, J, K are orthogonal
with respect to g.

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Hermitian
forms

wI('a ) — g(‘,l‘),wJ,WK

(real, but not closed). Then Q2 = wj;+ v/—1wg is of Hodge type (2,0) with
respect to I.

If d2 =0, (M,I,J,K,g) is hyperkahler (this is one of the definitions).

Consider a weaker condition:
o2 =0, 8: N, 1) — N3O\, T)
11
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DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, 1I,J, K) be a hypercomplex manifold, g a quaternionic Hermitian met-
ric, and Q = w; 4+ /-1 wg the corresponding (2,0)-form. We say that g is
HKT (‘“weakly hyperk "ahler with torsion”) if

02 = 0.

HKT-metrics play in hypercomplex geometry the same role as Kahler
metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of an
“"HKT-class” (similar to Kahler class) in a certain finite-dimensional coholol-
ogy group. Two metrics in the same HKT-class differ by a potential, which

is a function.

2.When (M,I) has trivial canonical bundle, a version of Hodge theory is
established giving an s((2)-action on cohomology.
12
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Canonical bundle of a hypercomplex manifold.

0. Quaternionic Hermitian structure always exists.

1. Complex dimension is even.

2. The canonical line bundle A9 (M, I) of (M, I) is always trivial topologically.
Indeed, a non-degenerate section of canonical line bundle is provided by top
power of a form €2 associated with some quaternionic Hermitian strucure. In
particular,

c1(M,I) = 0.

It is non-trivial holomorphically in many cases. However, /\”»O(M, I) is trivial
and holonomy of Obata connection lies in SL(n,H) when M is a nilmanifold
(Barberis-Dotti-V., 2007)

13
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SU(2)-action on AN*(M)

The group SU(2) of unitary quaternions acts on T'M, because quaternion
algebra acts. By multilinearity, this action is extended to A*(M).

1. The Hodge decomposition AN*(M) = @ APY(M) is recovered from this
SU(2)-action. “Hypercomplex analogue of the Hodge decomposition” .

2. (wr,wy,wg) is an irreducible 3-dimensional representation of SU(2), for
any quaternionic Hermitian structure (“representation of weight 2").

WEIGHT of a representation.
We say that an irreducible SU(2)-representation W has weight i if dimW =
1+ 1. A representation is said to be pure of weight ¢ if all its irreducible
components have weight ¢. If all irreducible components of a representation
W1 have weight < ¢, we say that Wy is a representation of weight <. In
a similar fashion one defines representations of weight > «.

14
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Quaternionic Dolbeault algebra

The weight is multiplicative, in the following sense: a tensor product of
representations of weights < and < j5 has weight <1+ j.

Clearly, AL(M) has weight 1. Therefore, A*(M) has weight <

Let V' C A*(M) be the maximal SU(2)-invariant subspace of weight < i.

By multiplicativity, V* = @, V' is an ideal in A*(M). We also have Vi =
N (M) for i > 2n. Also, dVi C VTl hence V* C A*(M) is a differential ideal

in (AY(M),d).

Denote by (/\ (M),dy) the quotient algebra A*(M)/V*.
We call it the quaternlonlc Dolbeault algebra (gD-algebra) of M.

A similar construction was given by Salamon in a more general situation.
15
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The quaternionic Dolbeault algebra can be computed explicitly, in terms of
the Hodge decomposition.

The Hodge decomposition is induced from the SU(2)-action, hence it is
compatible with weights: A’ W (M) = ®pyg= NP qI(M)

Let v/—1Z be an element of the Lie algebra su(2) ® C acting as +v/—1 (p — q)
on AP9(M). This vector generates the Cartan algebra of su(2). The su(2)-
action induces an isomorphism of AP I(M) for all {p,qlp +q¢ = k, p,q > 0}.
This gives

T heorem:
N (M) ANOPTa(pr ).

This isomorphism is provided by the su(2) ® C-action.
Indeed, the space AOP(M,I) C /\p% ) is pure of weight p,
hence A%P(M, I) coincides with A7 P (M)

16
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Differentials in the gD-complex

We extend J: AL(M) — AL(M) to A*(M) by multiplicativity. Since I and J
anticommute on AL(M), we have J(APY(M, 1)) = ANGP(M,I).

Denote by
8y NPO(M,I) — APO(M, 1)

the operator Jodo J, where 8 : A%P(M,I) — AOP(M,I) is the standard
Dolbeault differential. Then 9, 9; anticommute. Moreover, there exists a
multiplicative isomorphism of bicomplexes.

17
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NS (M) AP (M)

dO,l 8

AO(M)  AZH(M) AO(MY AP

AVARAYE

AP(M) AT AR AP APO(M) ARO(M)

12
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Potentials for HKT-metrics

A quaternionic Hermitian metric can be recovered from the correspond-
ing (2,0)-form: wj;(z,y) = %Q(m, J(%)), where z,y € THO(M). The HKT-
structures uniquely correspond to (2,0)-forms which are

1. Real: J(2)=Q

2. Closed: 02 = 0.

2. Positive: Q(z, J(Z)) > 0, for any non-zero z € T1.9(M)

Locally, any HKT-metric is given by a potential: 2 = 00;p where ¢ is a
smooth function.

Any conveXx, and any strictly plurisubharmonic function is a potential
of some HKT-structure. Therefore, HKT-structures locally always exist.
19
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Quaternionic Monge-Ampere equation
Let M be an HKT-manifold with holonomy in SL(n,H). (this is equivalent to
having trivial canonical bundle). Then the canonical bundle is trivialized by a

form ®; € A2%09, non-degenerate and satisfying J(®;) = ®;.

Quaternionic Monge-Ampere equation:

(Q —|— 88J§0)n — Afef(D]

This equation can be rewritten as a generalized Monge-Ampere, hence
solutions are unique.

20
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Let R: A2PO(M) — ADP(M) be the isomorphism provided by su(2)-action
as above.

We call a (2p,0)-form n real if J(n) =7, and positive if n(z, J(Z)) > 0.
Theorem 1: Let M be an HKT-manifold with holonomy in SL(n,H), and
(OF IS A210 the corresponding real trivialization of a canonical bundle. Then
R(®;) is closed and positive (replace ®; by —®; if necessary). Moreover, for
any (2p,0)-form n, the form R(n) A R(®Pj) is

1. Real if and only if n is real.

2. Positive if and only if n is positive.

3. Closed if and only if on = 0.

4. R(00;p) N R(P)) = 00p A R(Pj).
21
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Quaternionic Monge-Ampere and complex geometry

The quaternionic Monge-Ampere is equivalent to
R(®r) A R(Q2+ 0050)™ = Asel Voly, .
by Theorem 1 this is the same as
R(®) A (wp 4+ 00p)™" = Afef Vol .

This is generalized Monge-Ampere!
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